Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(4): e0009424, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470254

RESUMO

TcdB is an intracellular bacterial toxin indispensable to Clostridioides difficile infections. The ability to use chondroitin sulfate proteoglycan 4 (CSPG4) as a primary cell surface receptor is evolutionarily conserved by the two major variants of TcdB. As CSPG4 does not typically undergo receptor-mediated endocytosis, we sought to identify environmental factors that stabilize interactions between TcdB and CSPG4 to promote cell binding and entry into the cytosol. Using a series of TcdB receptor-binding mutants and cell lines with various receptor expression profiles, we discovered that extracellular Ca2+ promotes receptor-specific interactions with TcdB. Specifically, TcdB exhibits preferential binding to CSPG4 in the presence of Ca2+, with the absence of Ca2+ resulting in CSPG4-independent cell surface interactions. Furthermore, Ca2+ did not enhance TcdB binding to chondroitin sulfate (CS), the sole glycosaminoglycan of CSPG4. Instead, CS was found to impact the rate of cell entry by TcdB. Collectively, results from this study indicate that Ca2+ enhances cell binding by TcdB and CS interactions contribute to subsequent steps in cell entry. IMPORTANCE: Clostridioides difficile is a leading cause of antibiotic-associated gastrointestinal illness, and many disease pathologies are caused by the toxin TcdB. TcdB engages multiple cell surface receptors, with receptor tropisms differing among the variants of the toxin. Chondroitin sulfate proteoglycan 4 (CSPG4) is a critical receptor for multiple forms of TcdB, and insights into TcdB-CSPG4 interactions are applicable to many disease-causing strains of C. difficile. CSPG4 is modified by chondroitin sulfate (CS) and contains laminin-G repeats stabilized by Ca2+, yet the relative contributions of CS and Ca2+ to TcdB cytotoxicity have not been determined. This study demonstrates distinct roles in TcdB cell binding and cell entry for Ca2+ and CS, respectively. These effects are specific to CSPG4 and contribute to the activities of a prominent isoform of TcdB that utilizes this receptor. These findings advance an understanding of factors contributing to TcdB's mechanism of action and contribution to C. difficile disease.

2.
J Infect Dis ; 228(7): 966-974, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37163747

RESUMO

Lymph nodes and spleens are innervated by sympathetic nerve fibers that enter alongside arteries. Despite discovery of these nerve fibers nearly 40 years ago, the role of these nerves during response to infection remains poorly defined. We have found that chemical depletion of sympathetic nerve fibers compromises the ability of mice to develop protective immune memory to a Staphylococcus aureus infection. Innate control of the primary infection was not impacted by sympathectomy. Germinal center formation is also compromised in nerve-depleted animals; however, protective antibody responses are still generated. Interestingly, protective CD4+ T-cell memory fails to form in the absence of sympathetic nerves after S aureus infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Camundongos , Animais , Linfócitos T CD4-Positivos , Linfonodos , Sistema Nervoso Simpático
3.
PLoS Pathog ; 19(3): e1011272, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972308

RESUMO

The signaling pathways and networks regulating expression of chondroitin sulfate proteoglycan 4 (CSPG4), a cancer-related protein that serves as a receptor for Clostridiodes difficile TcdB, are poorly defined. In this study, TcdB-resistant/CSPG4-negative HeLa cells were generated by exposure to increasing concentrations of the toxin. The cells that emerged (HeLa R5) lost expression of CSPG4 mRNA and were resistant to binding by TcdB. mRNA expression profiles paired with integrated pathway analysis correlated changes in the Hippo and estrogen signaling pathways with a CSPG4 decrease in HeLa R5 cells. Both signaling pathways altered CSPG4 expression when modulated chemically or through CRISPR-mediated deletion of key transcriptional regulators in the Hippo pathway. Based on the in vitro findings, we predicted and experimentally confirmed that a Hippo pathway inactivating drug (XMU-MP-1) provides protection from C. difficile disease in a mouse model. These results provide insights into key regulators of CSPG4 expression and identify a therapeutic for C. difficile disease.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Animais , Camundongos , Clostridioides difficile/genética , Via de Sinalização Hippo , Toxinas Bacterianas/metabolismo , Células HeLa , Clostridioides , RNA Mensageiro/metabolismo , Proteínas de Membrana/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-35353674

RESUMO

An acid/alcohol-producing, Gram-stain-positive, obligately anaerobic, rod-shaped, non-motile, non-spore forming acetogen, designated as strain P21T, was isolated from old hay after enrichment with CO as the substrate. Spores not observed even after prolonged incubation (30 days). Phylogenetic analysis of the 16S rRNA gene sequence of strain P21T showed it was closely related to Clostridium carboxidivorans DSM 15243T (97.9%), Clostridium scatologenes DSM 757T (97.7 %) and Clostridium drakei DSM 12750T (97.7 %). The genome is 5.6 Mb and the G+C content is 29.4 mol%. Average nucleotide identity between strain P21T, C. carboxidivorans, C. scatologenes and C. drakei was 87.1, 86.4, 86.4 %, respectively. Strain P21T grew on CO:CO2, H2:CO2, l-arabinose, ribose, xylose, fructose, galactose, glucose, lactose, mannose, cellobiose, sucrose, cellulose, starch, pyruvate, choline, glutamate, histidine, serine, threonine and casamino acids. End products of metabolism were acetate, butyrate, caproate, ethanol and hexanol. Dominant cellular fatty acids (>10 %) were C16 : 0 (41.5 %), C16 : 1 ω7c/C16 : 1 ω6c (10.0 %), and a summed feature containing cyclo C17 : 1/C18 : 0 (17.3 %). Based on the phenotypic, chemotaxonomic, phylogenetic and phylogenomic analyses, strain P21T represents a new species in the genus Clostridium, for which the name Clostridium muellerianum sp. nov. is proposed. The type strain is P21T (=DSM 111390T=NCIMB 15261T).


Assuntos
Monóxido de Carbono , Ácidos Graxos , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridium , DNA Bacteriano/genética , Ácidos Graxos/química , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737364

RESUMO

Here, we report the genome sequence of Clostridium sp. strain P21, isolated from old hay from Stillwater, Oklahoma. This announcement describes the generation and annotation of the 5.6-Mb genomic sequence of strain P21, which will aid in studies targeting genes involved in the enhancement of acid-alcohol production.

6.
Int J Syst Evol Microbiol ; 70(6): 3639-3646, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32501783

RESUMO

A Gram-stain-negative, microaerophilic, non-motile, rod-shaped bacterium strain designated PMP191FT, was isolated from a human peritoneal tumour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the organism formed a lineage within the family Chitinophagaceae that was distinct from members of the genus Pseudoflavitalea (95.1-95.2 % sequence similarity) and Pseudobacter ginsenosidimutans (94.4 % sequence similarity). The average nucleotide identity values between strain PMP191FT and Pseudoflavitalea rhizosphaerae T16R-265T and Pseudobacter ginsenosidimutans Gsoil 221T was 68.9 and 62.3% respectively. The only respiratory quinone of strain PMP191FT was MK-7 and the major fatty acids were iso-C15 : 0, iso-C15 : 1 G and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The polar lipids consisted of phosphatidylethanolamine and some unidentified amino and glycolipids. The G+C content of strain PMP191FT calculated from the genome sequence was 43.4 mol%. Based on phylogenetic, phenotypic and chemotaxonomic evidence, strain PMP191FT represents a novel species and genus for which the name Parapseudoflavitalea muciniphila gen. nov., sp. nov. is proposed. The type strain is PMP191FT (=DSM 104999T=ATCC BAA-2857T = CCUG 72691T). The phylogenetic analyses also revealed that Pseudobacter ginsenosidimutans shared over 98 % sequence similarly to members of the genus Pseudoflavitalea. However, the average nucleotide identity value between Pseudoflavitalea rhizosphaerae T16R-265T, the type species of the genus and Pseudobacter ginsenosidimutans Gsoil 221T was 86.8 %. Therefore, we also propose that Pseudobacter ginsenosidimutans be reclassified as Pseudoflavitalea ginsenosidimutans comb. nov.


Assuntos
Bacteroidetes/classificação , Neoplasias Peritoneais/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Baltimore , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Humanos , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...