Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(10): 4105-4110, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37718488

RESUMO

Electroactive microorganisms are now understood to be abundant across nature, though many are categorized as "weak electricigens" not suitable for reasonable power generation. We report the use of weak electricigens from the natural environment for rapid, real-time water quality monitoring. Using a variety of pesticides as model chemical pollutants, the bioelectrochemical sensor was responsive within minutes at all concentrations tested (0.05-2 ppm) and could be repreatedly used long-term. Due to the prevalence of electroactive microorganisms in the natural environment, such sensors could work in tandem with conventional monitoring methods and may be useful for detecting emerging contaminants.

2.
Trends Biotechnol ; 40(5): 564-575, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34696916

RESUMO

Recently several non-traditional electroactive microorganisms have been discovered. These can be considered weak electricigens; microorganisms that typically rely on soluble electron acceptors and donors in their lifecycle but are also capable of extracellular electron transfer (EET), resulting in either a low, unreliable, or otherwise unexpected current. These unanticipated electroactive microorganisms represent a new chapter in electromicrobiology and have important medical, environmental, and biotechnological relevance. As such, it is essential to continue the momentum of their discovery. However, their study poses unique challenges due to their low current output. Capturing their signal necessitates novel approaches including unconventional electrode choice, the use of sensitive electrochemical techniques, and modifications of conventional experiments that use bioelectrochemical systems (BES).


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons
4.
mBio ; 9(2)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636430

RESUMO

Enterococci are important human commensals and significant opportunistic pathogens. Biofilm-related enterococcal infections, such as endocarditis, urinary tract infections, wound and surgical site infections, and medical device-associated infections, often become chronic upon the formation of biofilm. The biofilm matrix establishes properties that distinguish this state from free-living bacterial cells and increase tolerance to antimicrobial interventions. The metabolic versatility of the enterococci is reflected in the diversity and complexity of environments and communities in which they thrive. Understanding metabolic factors governing colonization and persistence in different host niches can reveal factors influencing the transition to biofilm pathogenicity. Here, we report a form of iron-dependent metabolism for Enterococcus faecalis where, in the absence of heme, extracellular electron transfer (EET) and increased ATP production augment biofilm growth. We observe alterations in biofilm matrix depth and composition during iron-augmented biofilm growth. We show that the ldh gene encoding l-lactate dehydrogenase is required for iron-augmented energy production and biofilm formation and promotes EET.IMPORTANCE Bacterial metabolic versatility can often influence the outcome of host-pathogen interactions, yet causes of metabolic shifts are difficult to resolve. The bacterial biofilm matrix provides the structural and functional support that distinguishes this state from free-living bacterial cells. Here, we show that the biofilm matrix can immobilize iron, providing access to this growth-promoting resource which is otherwise inaccessible in the planktonic state. Our data show that in the absence of heme, Enterococcus faecalis l-lactate dehydrogenase promotes EET and uses matrix-associated iron to carry out EET. Therefore, the presence of iron within the biofilm matrix leads to enhanced biofilm growth.


Assuntos
Biofilmes/crescimento & desenvolvimento , Transporte de Elétrons , Enterococcus faecalis/fisiologia , Ferro/metabolismo , Metabolismo Energético , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , L-Lactato Desidrogenase/metabolismo
5.
Genome Announc ; 6(9)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496835

RESUMO

Enterobacter sp. strain EA-1 is an electrochemically active bacterium isolated from tropical sediment in Singapore. Here, the annotated draft genome assembly of the bacterium is reported. Whole-genome comparison indicates that Enterobacter sp. EA-1, along with a previously sequenced Enterobacter isolate from East Asia, forms a distinct clade within the Enterobacter genus.

6.
Bioresour Technol ; 258: 354-364, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29519634

RESUMO

Electroactivity appears to be a phylogenetically diverse trait independent of cell wall classification, with both Gram-negative and Gram-positive electricigens reported. While numerous electricigens have been observed, the majority of research focuses on a select group of highly electroactive species. Under favorable conditions, many microorganisms can be considered electroactive, either through their own mechanisms or exogenously-added mediators, producing a weak current. Such microbes should not be dismissed based on their modest electroactivity. Rather, they may be key to understanding what drives extracellular electron transfer in response to transient limitations of electron acceptor or donor, with implications for the study of pathogens and industrial bioprocesses. Due to their low electroactivity, such populations are difficult to grow in bioelectrochemical systems and characterise with electrochemistry. Here, a critical review of recent research on weak electricigens is provided, with a focus on the methodology and the overall relevance to microbial ecology and bioelectrochemical systems.


Assuntos
Biofilmes , Eletroquímica , Fontes de Energia Bioelétrica , Respiração Celular , Eletrodos , Transporte de Elétrons , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...