Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37975416

RESUMO

INTRODUCTION: Army recruits conducting BCT are among the most susceptible population of military personnel to experience exertional heat illness, a concern expected to become increasingly urgent due to steadily rising temperatures. In this study, we provide an empirical analysis of wet bulb globe temperature (WBGT) index trends at U.S. Army BCT installations and quantify the magnitude of these trends. Assuming these warming trends continue, the anticipated effects of increasing temperature trends are discussed in relation to potential impacts on recruit heat illness incidence and training disruption. MATERIALS AND METHODS: We obtained weather data beginning in the early 1960s, including WBGT index measurements derived by the U.S. Air Force 14th Weather Squadron. We apply these datasets to two classifications for high WBGT index days, including one classification accounting for heat illness susceptibility based on prior day heat exposure, to determine when recruits are most at risk of heat illness. The daily likelihood of extreme WBGT index values is described at each installation using a 30-year climatological average. Trends in the WBGT index are evaluated quantitatively during the warm season (May 1-September 30) and full year and compared between decades and by individual BCT classes. RESULTS: Trends in the WBGT index have increased at all four BCT installations. Between January 1960 and October 2022, the mean WBGT index value increased most quickly at Ft Jackson, SC (0.272°C decade-1, CI: 0.255-0.289) and least at Ft Moore, GA (0.190°C decade-1, CI: 0.170-0.210). Ft Moore experiences the greatest heat burden, with the daily likelihood of experiencing a "black flag" event (≥90°F WBGT index) peaking at nearly 50% in late July, while Ft Leonard Wood, MO, experiences the least heat burden. This heat burden is spread unevenly across installations and dependent on BCT class start date. Recruits beginning in mid-June will experience approximately 200 hours of hazardous heat during BCT at Ft Moore, GA; 100 hours at Ft Jackson, SC; 80 hours at Ft Sill, OK; and 61 hours at Ft Leonard Wood, MO. CONCLUSIONS: Temperatures measured on the WBGT index have steadily increased at US Army basic training installations since at least 1960. In the future, adaptation to the BCT program will be required to maintain rigorous standards without incurring unacceptable risk of recruit heat illness. The analysis provided by this study can help inform medical, training, and policy implementations needed to ensure continued BCT in a warming world.

2.
Ann N Y Acad Sci ; 1355: 31-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26267672

RESUMO

Increases in river fragmentation globally threaten freshwater biodiversity. Rivers are fragmented by many agents, both natural and anthropogenic. We review the distribution and frequency of these major agents, along with their effects on connectivity and habitat quality. Most fragmentation research has focused on terrestrial habitats, but theories and generalizations developed in terrestrial habitats do not always apply well to river networks. For example, terrestrial habitats are usually conceptualized as two-dimensional, whereas rivers often are conceptualized as one-dimensional or dendritic. In addition, river flow often leads to highly asymmetric effects of barriers on habitat and permeability. New approaches tailored to river networks can be applied to describe the network-wide effects of multiple barriers on both connectivity and habitat quality. The net effects of anthropogenic fragmentation on freshwater biodiversity are likely underestimated, because of time lags in effects and the difficulty of generating a single, simple signal of fragmentation that applies to all aquatic species. We conclude by presenting a decision tree for managing freshwater fragmentation, as well as some research horizons for evaluating fragmented riverscapes.


Assuntos
Ecossistema , Hidrobiologia/métodos , Rios , Animais , Humanos , Hidrobiologia/tendências
3.
Environ Manage ; 55(1): 6-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25331643

RESUMO

We develop an analytical approach for more systematically analyzing environmental management problems in order to develop strategic plans. This approach can be deployed by agencies, non-profit organizations, corporations, or other organizations and institutions tasked with improving environmental quality. The analysis relies on assessing the underlying natural processes followed by articulation of the relevant societal forces causing environmental change: (1) science and technology, (2) governance, (3) markets and the economy, and (4) public behavior. The four forces analysis is then used to strategize which types of actions might be most effective at influencing environmental quality. Such strategy has been under-used and under-valued in environmental management outside of the corporate sector, and we suggest that this four forces analysis is a useful analytic to begin developing such strategy.


Assuntos
Monitoramento Ambiental/métodos , Animais , Ecologia/legislação & jurisprudência , Ecologia/métodos , Ecologia/organização & administração , Monitoramento Ambiental/economia , Monitoramento Ambiental/legislação & jurisprudência , Governo
4.
Geomorphology (Amst) ; 214: 366-377, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24932057

RESUMO

Researchers have independently documented the effects of land use on rivers and threats to river management institutions, but the relationship between changes in institutional context and river condition is not well described. This study assesses the connections between resource management institutions, land use, and rivers by integrating social science, geospatial analysis, and geomorphology. In particular, we measured hydraulic geometry, sediment size distributions, and estimated sediment yield for four rivers in northern Tanzania and conducted semistructured interviews that assessed corresponding resource management institutions. Communities managed rivers through both customary (traditional, nonstate) and government institutions, but the differences in the resource management policies and practices of the study rivers themselves were fairly subtle. Clearer differences were found at broader scales; the four watersheds exhibited substantial differences in land cover change and sediment yield associated with the location of settlements, roadways, and cultivation. Unexpectedly, these recent land use changes did not initiate a geomorphic response in rivers. The long history of grazing by domestic and wild ungulates may have influenced water and sediment supplies such that river channel dimensions are more resistant to changes in land use than other systems or have already adjusted to predominant changes in boundary conditions. This would suggest that not all rivers will have the anticipated responses to contemporary land use changes because of antecedent land use patterns; over long time scales (centuries to millennia), the presence of grazers may actually increase the ability of rivers to withstand changes in land use. Our findings point to a need for further interdisciplinary study of dryland rivers and their shifts between system states, especially in areas with a long history of grazing, relatively recent changes in land use, and a dynamic social and institutional context.

5.
Ecology ; 95(1): 44-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24649645

RESUMO

The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the "biological stream width," complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a "stream signature" on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found > 0.5 km from the water's edge. The meta-analysis also identified explanatory variables that affect the stream signature. This improves our understanding of ecosystem conditions that permit spatially extensive subsidy transmission, such as in highly productive, middle-order streams and rivers. Resultant multivariate models from this analysis may be useful to managers implementing buffer rules and conservation strategies for stream and riparian function, as they facilitate prediction of the extent of subsidies. Our results stress that much of the subsidy remains near the stream, but also that subsidies (and aquatic organisms) are capable of long-distance dispersal into adjacent environments, and that the effective "biological stream width" of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone. Limited data available from marine and lake sources overlap well with the stream signature data, indicating that the "signature" approach may also be applicable to subsidy spatial dynamics across other ecosystems.


Assuntos
Cadeia Alimentar , Rios , Animais , Modelos Biológicos , Plantas
7.
Ecol Appl ; 19(8): 2078-92, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20014580

RESUMO

In the United States, stream restoration is an increasing part of environmental and land management programs, particularly under the auspices of compensatory mitigation regulations. Markets and regulations surrounding stream mitigation are beginning to mirror those of the well-established wetland mitigation industry. Recent studies have shown that wetland mitigation programs commonly shift wetlands across space from urban to rural areas, thereby changing the functional characteristics and benefits of wetlands in the landscape. However, it is not yet known if stream mitigation mirrors this behavior, and if so, what effects this may have on landscape-scale ecological and hydrological processes. This project addresses three primary research questions. (1) What are the spatial relationships between stream and wetland impact and compensation sites as a result of regulations requiring stream and wetland mitigation in the State of North Carolina? (2) How do stream impacts come about due to the actions of different types of developers, and how do the characteristics of impacts sites compare with compensation sites? (3) To what extent does stream compensation relocate high-quality streams within the river network, and how does this affect localized (intrawatershed) loss or gain of aquatic resources? Using geospatial data collected from the North Carolina Division of Water Quality and the Army Corps of Engineers' Wilmington District, we analyzed the behavior of the North Carolina Ecosystem Enhancement Program in providing stream and wetland mitigation for the State of North Carolina. Our results suggest that this program provides mitigation (1) in different ways for different types of permittees; (2) at great distances (both Euclidean and within the stream network) from original impacts; (3) in significantly different places than impacts within watersheds; and (4) in many cases, in different watersheds from original impacts. Our analysis also reveals problems with regulator data collection, storage, and quality control. These results have significant implications given new federal requirements for ecological consistency within mitigation programs. Our results also indicate some of the landscape-scale implications of using market-based approaches to ecological restoration in general.


Assuntos
Conservação dos Recursos Naturais/métodos , Rios , Áreas Alagadas , Animais , Monitoramento Ambiental , North Carolina
10.
Environ Manage ; 31(4): 453-65, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12677292

RESUMO

Dam removal has emerged as a critical issue in environmental management. Agencies responsible for dams face a drastic increase in the number of potential dam removals in the near future. Given limited resources, these agencies need to develop ways to decide which dams should be removed and in what order. The underlying science of dam removal is relatively undeveloped and most agencies faced with dam removal lack a coherent purpose for removing dams. These shortcomings can be overcome by the implementation of two policies by agencies faced with dam removal: (1) the development and adoption of a prioritization scheme for what constitutes an important dam removal, and (2) the establishment of minimum levels of analysis prior to decision-making about a dam removal. Federal and state agencies and the scientific community must encourage an initial experimental phase of dam removal during which only a few dams are removed, and these are studied intensively. This will allow for the development of the fundamental scientific understanding needed to support effective decision-making in the future and minimize the risk of disasters arising from poorly thought out dam removal decisions.


Assuntos
Tomada de Decisões , Meio Ambiente , Formulação de Políticas , Abastecimento de Água , Conservação dos Recursos Naturais , Engenharia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...