Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968381

RESUMO

The synthesis of isotopically labeled organic molecules is vital for drug and agrochemical discovery and development. Carbon isotope exchange is emerging as a leading method to generate carbon-labeled targets, which are sought over hydrogen-based labels due to their enhanced stability in biological systems. While many bioactive small molecules bear carbon-containing stereocenters, direct enantioselective carbon isotope exchange reactions have not been established. We describe the first example of an enantioselective carbon isotope exchange reaction, where (radio)labeled α-amino acids can be generated from their unlabeled precursors using a stoichiometric chiral aldehyde receptor with isotopically labeled CO2 followed by imine hydrolysis. Many proteinogenic and non-natural derivatives undergo enantioselective labeling, including the late-stage radiolabeling of complex drug targets.

2.
Nat Protoc ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548937

RESUMO

Isotopically carbon-labeled α-amino acids are valuable synthetic targets that are increasingly needed in pharmacology and medical imaging. Existing preparations rely on early stage introduction of the isotopic label, which leads to prohibitive synthetic costs and time-intensive preparations. Here we describe a protocol for the preparation of C1-labeled α-amino acids using simple aldehyde catalysts in conjunction with [*C]CO2 (* = 14, 13, 11). This late-stage labeling strategy is enabled by the one-pot carboxylate exchange of unprotected α-amino acids with [*C]CO2. The protocol consists of three separate procedures, describing the syntheses of (±)-[1-13C]phenylalanine, (±)-[1-11C]phenylalanine and (±)-[1-14C]phenylalanine from unlabeled phenylalanine. Although the delivery of [*C]CO2 is operationally distinct for each experiment, each procedure relies on the same fundamental chemistry and can be executed by heating the reaction components at 50-90 °C under basic conditions in dimethylsulfoxide. Performed on scales of up to 0.5 mmol, this methodology is amenable to C1-labeling of many proteinogenic α-amino acids and nonnatural derivatives, which is a breakthrough from existing methods. The synthesis of (±)-[1-13C]phenylalanine requires ~2 d, with product typically obtained in a 60-80% isolated yield (n = 3, µ = 71, σ = 8.3) with an isotopic incorporation of 70-88% (n = 18, µ = 72, σ = 9.0). Starting from the preformed imino acid (~3 h preparation time), rapid synthesis of (±)-[1-11C]phenylalanine can be completed in ~1 h with an isolated radiochemical yield of 13%. Finally, (±)-[1-14C]phenylalanine can be accessed in ~2 d with a 51% isolated yield and 11% radiochemical yield.

3.
Nat Chem ; 14(12): 1367-1374, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344821

RESUMO

The isotopic labelling of small molecules is integral to drug development and for understanding biochemical processes. The preparation of carbon-labelled α-amino acids remains difficult and time consuming, with established methods involving label incorporation at an early stage of synthesis. This explains the high cost and scarcity of C-labelled products and presents a major challenge in 11C applications (11C t1/2 = 20 min). Here we report that aldehydes catalyse the isotopic carboxylate exchange of native α-amino acids with *CO2 (* = 14, 13, 11). Proteinogenic α-amino acids and many non-natural variants containing diverse functional groups undergo labelling. The reaction probably proceeds via the trapping of *CO2 by imine-carboxylate intermediates to generate iminomalonates that are prone to monodecarboxylation. Tempering catalyst electrophilicity was key to preventing irreversible aldehyde consumption. The pre-generation of the imine carboxylate intermediate allows for the rapid and late-stage 11C-radiolabelling of α-amino acids in the presence of [11C]CO2.


Assuntos
Aldeídos , Dióxido de Carbono , Aldeídos/química , Aminoácidos/química , Catálise , Ácidos Carboxílicos , Iminas
4.
Angew Chem Int Ed Engl ; 60(51): 26495-26499, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34658132

RESUMO

The enantioselective generation of quaternary carbon centers remains challenging but is of growing importance for the preparation of functional molecules. Metal catalyzed allylic alkylations of tertiary electrophiles can provide access to these substructures but remain generally incompatible with organometallic benzyl nucleophiles. Here we demonstrate that electron-deficient arylacetates can serve as benzyl nucleophile surrogates to generate enantioenriched acyclic molecules containing a quaternary carbon center via a two-step substitution-decarboxylation process using isoprene monoxide. Products are often obtained in >90 % ee using a commercially available catalyst. An array of electron-withdrawing functional groups on the arylacetate moiety are tolerated. The lactone generated by the initial substitution reaction can be used in further stereoselective transformations to prepare molecules with acyclic vicinal quaternary stereocenters.

5.
Chem Commun (Camb) ; 57(22): 2724-2731, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33623942

RESUMO

The Cu-catalyzed oxidative cross-coupling of N- and O-nucleophiles with aryl boronic acids (the Chan-Lam reaction) remains among the most useful approaches to prepare aniline and phenol derivatives. The combination of high chemoselectivity, mild reaction conditions, and the ability to use simple Cu-salts as catalysts makes this process a valuable alternative to aromatic substitutions and Pd-catalyzed reactions of aryl electrophiles (Buchwald-Hartwig coupling). Despite the widespread use of Chan-Lam reactions in synthesis, the analogous carbon-carbon bond forming variant of this process had not been developed prior to our work. This feature article describes our discovery and application of Cu-catalyzed oxidative coupling reactions of activated methylene derivatives or carboxylic acids with nucleophiles including aryl boronic esters and amines.

6.
Rapid Commun Mass Spectrom ; 30(23): 2497-2507, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27650360

RESUMO

RATIONALE: A cleavable linker is designed and synthesized for the selective capture of azide-containing compounds. This article presents a proof of concept methodology involving the use of peptide-functionalized aminopropyl silica, on which the peptide is constructed by solid-phase peptide synthesis. METHODS: The peptide linker has L-propargylglycine (Pra) at one terminal end to allow the conjugation of azide-containing molecules by copper assisted azide alkyne cycloaddition, also known as click reaction. L-Arginine (Arg) is placed just before Pra to permit the release of the captured product by tryptic cleavage. Three glycine (Gly) residues, as part of the linker, are appended to the silica bead to present a spacer section that allows efficient tryptic cleavage devoid of steric hindrance imposed by the bulky bead. The bead composition is Si-O-propyl-NH-Gly-Gly-Gly-Arg-Pra. RESULTS: This solid-phase material can be used to capture and release azide-functionalized compounds. The beads are first tested on three azido compounds, 2-azido-2-deoxyglucose (ADG), BOC-p-azido-Phe-OH (BAzPhe), where BOC = tert-butoxycarbonyl, and tetraacetylated-N-azidomannosamine (Ac4 ManNAz). Copper-mediated click reaction conditions are used and released products are characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem MS (MS/MS). CONCLUSIONS: This method allows easy identification of captured compounds based on mass and fragmentation analysis. Moreover, it is useful for the analysis of small azide-containing compounds by MALDI-TOF-MS which may not be possible otherwise due to matrix interferences. The insertion of isotopically labeled Arg residues provides the possibility of multiplex analysis, from which the beads have been called MAGIC (for Multiplexed Azido-Group Isotopic Capture). Copyright © 2016 John Wiley & Sons, Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...