Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 72(10): 2302-7, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10845378

RESUMO

A multicomponent mobile phase utilizing ion-exchange, ion-exclusion, and ion-pairing principles for the rapid isocratic separation of anions in low explosives residue by ion chromatography (IC) has been developed. The notable feature of this system is that an ion-pairing reagent and an ion-exclusion reagent are combined in the same mobile phase. Contrary to expectation, these reagents act independently of each other in solution. The stock mobile-phase composition consisted of boric acid, D-gluconic acid, lithium hydroxide, and glycerol. Tetrapropylammonium hydroxide, an ion-interaction reagent was used to achieve pH 8.5. Acetonitrile (ACN) was added to enhance resolution and octanesulfonic acid, an ion-exclusion reagent, was added to adjust the retention time of perchlorate. Separation of a mixture of anions common to low explosives residue was achieved in less than 16 min using a Waters IC-Pak Anion HR column. Optimization studies were performed by changing the concentration of the ACN and by altering the pH or the type of ion-interaction or -exclusion agents. Simulated case studies were performed using postblast residues from pipe bombs. The results show this method to be a valid and reproducible procedure for forensic casework analysis. The practical significance of this system is that a reduction in the analysis time and an improvement in efficiency of late-eluting peaks can be achieved without resorting to gradient elution techniques. For the analysis of anions detected in explosives residue, the Waters IC-Pak Anion HR column has proven to be a suitable replacement for the Vydac 300IC405 column, which has been discontinued by the manufacturer.

2.
Nature ; 403(6765): 62-4, 2000 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-10638750

RESUMO

Accurate measurement of the lifetime of the neutron (which is unstable to beta decay) is important for understanding the weak nuclear force and the creation of matter during the Big Bang. Previous measurements of the neutron lifetime have mainly been limited by certain systematic errors; however, these could in principle be avoided by performing measurements on neutrons stored in a magnetic trap. Neutral-particle and charged-particle traps are widely used for studying both composite and elementary particles, because they allow long interaction times and isolation of particles from perturbing environments. Here we report the magnetic trapping of neutrons. The trapping region is filled with superfluid 4He, which is used to load neutrons into the trap and as a scintillator to detect their decay. Neutrons in the trap have a lifetime of 750(+330)(-200) seconds, mainly limited by their beta decay rather than trap losses. Our experiment verifies theoretical predictions regarding the loading process and magnetic trapping of neutrons. Further refinement of this method should lead to improved precision in the neutron lifetime measurement.

3.
4.
Phys Rev A ; 52(4): R2515-R2518, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9912638
5.
7.
8.
Phys Rev Lett ; 59(6): 672-675, 1987 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-10035841
9.
Phys Rev A Gen Phys ; 34(2): 1602-1604, 1986 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9897433
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA