Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 30289, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27509823

RESUMO

The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682-686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using the same experimental setup with minor modifications. We find a violation of the CHSH-Bell inequality of 2.35 ± 0.18, in agreement with the first run, yielding an overall value of S = 2.38 ± 0.14. We calculate the resulting P-values of the second experiment and of the combined Bell tests. We provide an additional analysis of the distribution of settings choices recorded during the two tests, finding that the observed distributions are consistent with uniform settings for both tests. Finally, we analytically study the effect of particular models of random number generator (RNG) imperfection on our hypothesis test. We find that the winning probability per trial in the CHSH game can be bounded knowing only the mean of the RNG bias. This implies that our experimental result is robust for any model underlying the estimated average RNG bias, for random bits produced up to 690 ns too early by the random number generator.

2.
Nature ; 526(7575): 682-6, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26503041

RESUMO

More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in 'loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...