Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257705

RESUMO

India is currently facing the devastating second wave of COVID-19 pandemic resulting in approximately 4000 deaths per day. To control this pandemic continuous mutational surveillance and genomic epidemiology of circulating strains is very important. In this study, we performed mutational analysis of the protein coding genes of SARS-CoV-2 strains (n=2000) collected during January 2021 to March 2021. Our data revealed the emergence of a new variant in West Bengal, India, which is characterized by the presence of 11 co-existing mutations including D614G, P681H and V1230L in S-glycoprotein. This new variant was identified in 70 out of 412 sequences submitted from West Bengal. Interestingly, among these 70 sequences, 16 sequences also harbored E484K in the S glycoprotein. Phylogenetic analysis revealed strains of this new variant emerged from GR clade (B.1.1) and formed a new cluster. We propose to name this variant as GRL or lineage B.1.1/S:V1230L due to the presence of V1230L in S glycoprotein along with GR clade specific mutations. Co-occurrence of P681H, previously observed in UK variant, and E484K, previously observed in South African variant and California variant, demonstrates the convergent evolution of SARS-CoV-2 mutation. V1230L, present within the transmembrane domain of S2 subunit of S glycoprotein, has not yet been reported from any country. Substitution of valine with more hydrophobic amino acid leucine at position 1230 of the transmembrane domain, having role in S protein binding to the viral envelope, could strengthen the interaction of S protein with the viral envelope and also increase the deposition of S protein to the viral envelope, and thus positively regulate virus infection. P618H and E484K mutation have already been demonstrated in favor of increased infectivity and immune invasion respectively. Therefore, the new variant having G614G, P618H, P1230L and E484K is expected to have better infectivity, transmissibility and immune invasion characteristics, which may pose additional threat along with B.1.617 in the ongoing COVID-19 pandemic in India.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251117

RESUMO

SARS-CoV-2 strains with both high transmissibility and potential to cause asymptomatic infection is expected to gain selective advantage over other circulating strains having either high transmissibility or ability to trigger asymptomatic infection. The D614G mutation in spike glycoprotein, the characteristic mutation A2a clade, has been associated with high transmissibility, whereas the A3 clade specific mutation L37F in NSP6 protein has been linked with asymptomatic infection. In this study, we performed a comprehensive mutational analysis of 3,77,129 SARS-CoV-2 genomes collected during January, 2020 to December, 2020 from all across the world for the presence of D614G and L37F mutations. Out of 3,77,129 SARS-CoV-2 strains analysed, 14, 598 (3.87%) were found to harbour both the D614G and L37F mutations. Majority of these double mutant SARS-CoV-2 strains were identified in Europe (11097) followed by North America (1915), Asia (980), Oceania (242), Africa (219), and South America (145). Geographical root surveillance revealed their first emergence during February-March in all the six continents. Temporal prevalence analysis from February, 2020 to December, 2020 showed a gradual upsurge in their frequencies worldwide, which strongly demonstrated the adaptive selection of these double mutants. Evolutionary analysis depicted that these double mutants emerged as a new clade in the dendrogram (named as A2a/3), and were sub-divided into four distinct clusters (Cluster I, II, III and IV) according to different sets of coexisting mutations. The frequency distribution pattern showed the global predominance of cluster III (41.42%), followed by cluster IV (23.31%), cluster II (21.02%) and cluster I (14.25%). Overall, our study highlighted the emergence of a unique phylogenetic clade encompassing the double-mutant SARS-CoV-2 strains which may provide a fitness advantage during course of virus evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...