Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048845

RESUMO

Herein, we present a synthesis route for high-efficiency nitrogen-doped carbon materials using kraft pulping residue, black liquor, and wood charcoal as carbon sources. The synthesized nitrogen-doped carbon materials, based on black liquor and its mixture with wood charcoal, exhibited high specific surface areas (SSAs) of 2481 and 2690 m2 g-1, respectively, as well as a high volume of mesopores with an average size of 2.9-4.6 nm. The nitrogen content was approximately 3-4 at% in the synthesized nitrogen-doped carbon materials. A specific capacitance of approximately 81-142 F g-1 was achieved in a 1 M Na2SO4 aqueous solution at a current density of 0.2 A g-1. In addition, the specific capacitance retention was 99% after 1000 cycles, indicating good electrochemical stability.

2.
ACS Sustain Chem Eng ; 11(8): 3429-3436, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36910249

RESUMO

Aqueous Na-ion batteries are among the most discussed alternatives to the currently dominating Li-ion battery technology, in the area of stationary storage systems because of their sustainability, safety, stability, and environmental friendliness. The electrochemical properties such as ion insertion kinetics, practical capacity, cycling stability, or Coulombic efficiency are strongly dependent on the structure, morphology, and purity of an electrode material. The selection and optimization of materials synthesis route in many cases allows researchers to engineer materials with desired properties. In this work, we present a comprehensive study on size- and shape-controlled hydro(solvo)thermal synthesis of NaTi2(PO4)3 nanoparticles. The effects of different alcohol/water synthesis media on nanoparticle phase purity, morphology, and size distribution are analyzed. Water activity in the synthesis media of different alcohol solutions is identified as the key parameter governing the nanoparticle phase purity, size, and shape. The careful engineering of NaTi2(PO4)3 nanoparticle morphology allows control of the electrochemical performance and degradation of these materials as aqueous Na-ion battery electrodes.

3.
ACS Omega ; 8(51): 49396-49405, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162725

RESUMO

The present study introduces a novel method for the synthesis of magneto-plasmonic nanoparticles (MPNPs) with enhanced functionality for surface-enhanced Raman scattering (SERS) applications. By employing pulsed laser ablation in liquid (PLAL) to synthesize plasmonic nanoparticles and wet chemistry to synthesize magnetic nanoparticles, we successfully fabricated chemically pure hybrid Fe3O4@Au and Fe3O4@Ag nanoparticles. We demonstrated a straightforward approach of an electrostatic attachment of the plasmonic and magnetic parts using positively charged polyethylenimine. The MPNPs displayed high SERS sensitivity and reproducibility, and the magnetic part allowed for the controlled separation of the nanoparticles from the reaction mixture, their subsequent concentration, and their precise deposition onto a specified surface area. Additionally, we fabricated alloy based MPNPs from AgxAu100-x (x = 50 and 80 wt %) targets with distinct localized surface plasmon resonance (LSPR) wavelengths. The compositions, morphologies, and optical properties of the nanoparticles were characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, and multiwavelength Raman spectroscopy. A standard SERS marker, 4-mercaptobenzoic acid (4-MBA), validated the enhancement properties of the MPNPs and found an enhancement factor of 2 × 108 for the Fe3O4@Ag nanoparticles at 633 nm excitation. Lastly, we applied MPNP-enhanced Raman spectroscopy for the analysis of the biologically relevant molecule adenine and found a limit of detection of 10-7 M at 785 nm excitation. The integration of PLAL and wet chemical methods enabled the relatively fast and cost-effective production of MPNPs characterized by high SERS sensitivity and signal reproducibility that are required in various fields, including biomedicine, food safety, materials science, security, and defense.

4.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499853

RESUMO

Antimony selenide (Sb2Se3) material has drawn considerable attention as an Earth-abundant and non-toxic photovoltaic absorber. The power conversion efficiency of Sb2Se3-based solar cells increased from less than 2% to over 10% in a decade. Different deposition methods were implemented to synthesize Sb2Se3 thin films, and various device structures were tested. In search of a more environmentally friendly device composition, the common CdS buffer layer is being replaced with oxides. It was identified that on oxide substrates such as TiO2 using vacuum-based close-space deposition methods, an intermediate deposition step was required to produce high-quality thin films. However, little or no investigation was carried out using another very successful vacuum deposition approach in Sb2Se3 technology called vapour transport deposition (VTD). In this work, we present optimized VTD process conditions to achieve compact, pinhole-free, ultra-thin (<400 nm) Sb2Se3 absorber layers. Three process steps were designed to first deposit the seed layer, then anneal it and, at the final stage, deposit a complete Sb2Se3 absorber. Fabricated solar cells using absorbers as thin as 400 nm generated a short-circuit current density over 30 mA/cm2, which demonstrates both the very high absorption capabilities of Sb2Se3 material and the prospects for ultra-thin solar cell application.

5.
Environ Sci Pollut Res Int ; 29(49): 74933-74950, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35648351

RESUMO

The muscovite mica clay-graphene oxide-maghemite-magnetite (γ-Fe2O3-Fe3O4) composite was first used for the adsorption of caesium(I) and cobalt(II). The presence of clay minerals, graphene oxide, maghemite, and magnetite was detected in the prepared composite by XRD, WD-XRF, Mössbauer spectroscopy, and ATR-FTIR. The SEM and TEM results show that the composite has a layered structure with irregularly shaped pores on the surface. It was found that the adsorption of ions depends on the initial concentration, pH (except for caesium), mass of adsorbent, temperature, and contact time. The maximum adsorption capacity for Cs(I) and Co(II) was 2286 mg/g and 652 mg/g, respectively, and was obtained at concentrations (Cs(I) = 12,630 mg/L; Co(II) = 3200 mg/L), adsorbent mass of 0.01 g, pH (Cs(I) = 7; Co(II) = 5), temperature of 20 ± 1 °C, and contact time of 24 h. The high adsorption capacity of the composite could be due to a diversity of functional groups, a large number of active sites or the multilayer adsorption of caesium and cobalt ions on the surface of the composite. The Freundlich, Langmuir isotherms, and the pseudo-second-order kinetic model better describe the adsorption of these ions on the composite. The adsorption was non-spontaneous endothermic for Cs(I) and spontaneous endothermic for Co(II). The proposed mechanism of adsorption of Cs and Co ions on the composite is complex and involves electrostatic interactions and ion exchange. The ANFIS model proved to be quite effective in predicting the adsorption of Cs(I) and Co(II), as shown by the obtained values of R2, MSE, SSE, and ARE.

6.
Materials (Basel) ; 15(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683306

RESUMO

The synthesis of magnetic particles triggers the interest of many scientists due to their relevant properties and wide range of applications in the catalysis, nanomedicine, biosensing and magnetic separation fields. A fast synthesis of iron oxide magnetic particles using an eco-friendly and facile microwave-assisted solvothermal method is presented in this study. Submicron Fe3O4 spheres were prepared using FeCl3 as an iron source, ethylene glycol as a solvent and reductor and sodium acetate as a precipitating and nucleating agent. The influence of the presence of polyethylene glycol as an additional reductor and heat absorbent was also evaluated. We reduce the synthesis time to 1 min by increasing the reaction temperature using the microwave-assisted solvothermal synthesis method under pressure or by adding PEG at lower temperatures. The obtained magnetite spheres are 200-300 nm in size and are composed of 10-30 nm sized crystallites. The synthesized particles were investigated using the XRD, TGA, pulsed-field magnetometry, Raman and FTIR methods. It was determined that adding PEG results in spheres with mixed magnetite and maghemite compositions, and the synthesis time increases the size of the crystallites. The presented results provide insights into the microwave-assisted solvothermal synthesis method and ensure a fast route to obtaining spherical magnetic particles composed of different sized nanocrystallites.

7.
J Phys Chem Lett ; 12(37): 8991-8998, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34514804

RESUMO

Halide perovskite nanomaterials are widely used in optoelectronics and photonics due to their outstanding luminescent properties, whereas their strong multiphoton absorption makes them prospective for bioimaging. Nonetheless, instability of perovskites in aqueous solutions is an important limitation that prevents their application in biology and medicine. Here, we demonstrate fluorescence and upconversion imaging in living cells by employing CsPbBr3 nanocrystals (NCs) that show an improved water-resistance (at least for 24 h) after their coating as individual particles with various silica-based shells. The obtained phTEOS-TMOS@CsPbBr3 NCs possess high quality, which we confirm with high-resolution transmission and scanning transmission electron microscopy, X-ray diffraction analysis, Fourier-transform infrared and energy-dispersive X-ray spectroscopies, as well as with fluorescence optical microscopy. The developed platform can make the halide perovskite NCs suitable for various bioimaging applications.


Assuntos
Compostos de Cálcio/química , Nanopartículas/química , Óxidos/química , Titânio/química , Água/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lasers , Camundongos , Microscopia Confocal , Nanopartículas/toxicidade , Dióxido de Silício/química
8.
Langmuir ; 36(26): 7533-7544, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32493012

RESUMO

In this study, we present the synthesis of cationic brush-type polyelectrolytes and their use in the stabilization of GdPO4 particles in aqueous media. Polymers of various compositions were synthesized via the RAFT polymerization route. SEC equipped with triple detection (RI, DP, RALS, and LALS) was used to determine the molecular parameters (Mn, Mw, Mw/Mn). The exact composition of synthesized polymers was determined using NMR spectroscopy. Cationic brush-type polymers were used to improve the stability of aqueous GdPO4 particle dispersions. First, the IEPs of GdPO4 particles with different morphologies (nanorods, hexagonal nanoprisms, and submicrospheres) were determined by measuring the zeta potential of bare particle dispersions at various pH values. Afterward, cationic brush-type polyelectrolytes with different compositions were used for the surface modification of GdPO4 particles (negatively charged in alkaline media under a pH value of ∼10.6). The concentration and composition effects of used polymers on the change in particle surface potential and stability (DLS measurements) in dispersions were investigated and presented in this work. The most remarkable result of this study is redispersible GdPO4 nanoparticle colloids with increased biocompatibility and stability as well as new insights into possible cationic brush-type polyelectrolyte applicability in both scientific and commercial fields.

9.
ACS Appl Mater Interfaces ; 11(1): 1040-1048, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540432

RESUMO

Inorganic cesium lead halide perovskite nanowires, generating laser emission in the broad spectral range at room temperature and low threshold, have become powerful tools for the cutting-edge applications in the optoelectronics and nanophotonics. However, to achieve high-quality nanowires with the outstanding optical properties, it was necessary to employ long-lasting and costly methods of their synthesis, as well as postsynthetic separation and transfer procedures that are not convenient for large-scale production. Here we report a novel approach to fabricate high-quality CsPbBr3 nanolasers obtained by rapid precipitation from dimethyl sulfoxide solution sprayed onto hydrophobic substrates at ambient conditions. The synthesis technique allows producing the well-separated nanowires with a broad size distribution of 2-50 µm in 5-7 min, being the fastest method to the best of our knowledge. The formation of nanowires occurs via ligand-assisted reprecipitation triggered by intermolecular proton transfer from (CH3)2CHOH to H2O in the presence of a minor amount of water. The XRD patterns confirm an orthorhombic crystal structure of the as-grown CsPbBr3 single nanowires. Scanning electron microscopy images reveal their regular shape and truncated pyramidal end facets, while high-resolution transmission electron microscopy ones demonstrate their single-crystal structure. The lifetime of excitonic emission of the nanowires is found to be 7 ns, when the samples are excited with energy below the lasing threshold, manifesting the low concentration of defect states. The measured nanolasers of different lengths exhibit pronounced stimulated emission above 13 µJ cm-2 excitation threshold with quality factor Q = 1017-6166. Their high performance is assumed to be related to their monocrystalline structure, low concentration of defect states, and improved end facet reflectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...