Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(46): eadd9468, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383655

RESUMO

Innate immunity is the first line of host defense against pathogens. Here, through global transcriptome and proteome analyses, we uncover that newly described cytoplasmic poly(A) polymerase TENT-5 (terminal nucleotidyltransferase 5) enhances the expression of secreted innate immunity effector proteins in Caenorhabditis elegans. Direct RNA sequencing revealed that multiple mRNAs with signal peptide-encoding sequences have shorter poly(A) tails in tent-5-deficient worms. Those mRNAs are translated at the endoplasmic reticulum where a fraction of TENT-5 is present, implying that they represent its direct substrates. Loss of tent-5 makes worms more susceptible to bacterial infection. Notably, the role of TENT-5 in innate immunity is evolutionarily conserved. Its orthologs, TENT5A and TENT5C, are expressed in macrophages and induced during their activation. Analysis of macrophages devoid of TENT5A/C revealed their role in the regulation of secreted proteins involved in defense response. In summary, our study reveals cytoplasmic polyadenylation to be a previously unknown component of the posttranscriptional regulation of innate immunity in animals.

2.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613931

RESUMO

The aim of this work has been to study the possible degradation path of BPA under the Fenton reaction, namely to determine the energetically favorable intermediate products and to compare the cytotoxicity of BPA and its intermediate products of degradation. The DFT calculations of the Gibbs free energy at M06-2X/6-311G(d,p) level of theory showed that the formation of hydroquinone was the most energetically favorable path in a water environment. To explore the cytotoxicity the erythrocytes were incubated with BPA and three intermediate products of its degradation, i.e., phenol, hydroquinone and 4-isopropylphenol, in the concentrations 5-200 µg/mL, for 1, 4 and 24 h. BPA induced the strongest hemolytic changes in erythrocytes, followed by hydroquinone, phenol and 4-isopropylphenol. In the presence of hydroquinone, the highest level of RONS was observed, whereas BPA had the weakest effect on RONS generation. In addition, hydroquinone decreased the level of GSH the most. Generally, our results suggest that a preferable BPA degradation path under a Fenton reaction should be controlled in order to avoid the formation of hydroquinone. This is applicable to the degradation of BPA during waste water treatment and during chemical degradation in sea water.


Assuntos
Hidroquinonas , Poluentes Químicos da Água , Humanos , Hidroquinonas/toxicidade , Fenóis/farmacologia , Eritrócitos/metabolismo , Compostos Benzidrílicos/farmacologia , Fenol/metabolismo , Poluentes Químicos da Água/metabolismo
3.
PLoS Biol ; 19(7): e3001302, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252079

RESUMO

Defects in mitochondrial function activate compensatory responses in the cell. Mitochondrial stress that is caused by unfolded proteins inside the organelle induces a transcriptional response (termed the "mitochondrial unfolded protein response" [UPRmt]) that is mediated by activating transcription factor associated with stress 1 (ATFS-1). The UPRmt increases mitochondrial protein quality control. Mitochondrial dysfunction frequently causes defects in the import of proteins, resulting in the accumulation of mitochondrial proteins outside the organelle. In yeast, cells respond to mistargeted mitochondrial proteins by increasing activity of the proteasome in the cytosol (termed the "unfolded protein response activated by mistargeting of proteins" [UPRam]). The presence and relevance of this response in higher eukaryotes is unclear. Here, we demonstrate that defects in mitochondrial protein import in Caenorhabditis elegans lead to proteasome activation and life span extension. Both proteasome activation and life span prolongation partially depend on ATFS-1, despite its lack of influence on proteasomal gene transcription. Importantly, life span prolongation depends on the fully assembled proteasome. Our data provide a link between mitochondrial dysfunction and proteasomal activity and demonstrate its direct relevance to mechanisms that promote longevity.


Assuntos
Caenorhabditis elegans/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Ativação Enzimática , Técnicas de Silenciamento de Genes , Resposta a Proteínas não Dobradas
4.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546456

RESUMO

Phosphodiesterase 5 (PDE5) is one of the most extensively studied phosphodiesterases that is highly specific for cyclic-GMP hydrolysis. PDE5 became a target for drug development based on its efficacy for treatment of erectile dysfunction. In the present study, we synthesized four novel analogues of the phosphodiesterase type 5 (PDE5) inhibitor-tadalafil, which differs in (i) ligand flexibility (rigid structure of tadalafil vs. conformational flexibility of newly synthesized compounds), (ii) stereochemistry associated with applied amino acid building blocks, and (iii) substitution with bromine atom in the piperonyl moiety. For both the intermediate and final compounds as well as for the parent molecule, we have established the crystal structures and performed a detailed analysis of their structural features. The initial screening of the cytotoxic effect on 16 different human cancer and non-cancer derived cell lines revealed that in most cases, the parent compound exhibited a stronger cytotoxic effect than new derivatives, except for two cell lines: HEK 293T (derived from a normal embryonic kidney, that expresses a mutant version of SV40 large T antigen) and MCF7 (breast adenocarcinoma). Two independent studies on the inhibition of PDE5 activity, based on both pure enzyme assay and modulation of the release of nitric oxide from platelets under the influence of tadalafil and its analogues revealed that, unlike a reference compound that showed strong PDE5 inhibitory activity, the newly obtained compounds did not have a noticeable effect on PDE5 activity in the range of concentrations tested. Finally, we performed an investigation of the toxicological effect of synthesized compounds on Caenorhabditis elegans in the highest applied concentration of 6a,b and 7a,b (160 µM) and did not find any effect that would suggest disturbance to the life cycle of Caenorhabditis elegans. The lack of toxicity observed in Caenorhabditis elegans and enhanced, strengthened selectivity and activity toward the MCF7 cell line made 7a,b good leading structures for further structure activity optimization and makes 7a,b a reasonable starting point for the search of new, selective cytotoxic agents.


Assuntos
Caenorhabditis elegans/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Inibidores da Fosfodiesterase 5 , Piperazinas , Tadalafila , Animais , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Células MCF-7 , Inibidores da Fosfodiesterase 5/síntese química , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Tadalafila/análogos & derivados , Tadalafila/síntese química , Tadalafila/química , Tadalafila/farmacologia
5.
Curr Issues Mol Biol ; 35: 145-158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31422938

RESUMO

Post-translational protein modifications by ubiquitin, SUMO and other ubiquitin-like modifiers is common and essential for all eukaryotic organisms. Ubiquitin, SUMO and other ubiquitin-like modifiers are attached to target proteins by a set of related but distinct enzymes including activating enzyme, conjugating enzyme, a ligase and in some cases auxiliary proteins. Both ubiquitin and SUMO proteins regulate most physiological processes in cells and often interdependence of the protein modifications can be observed. Discoveries of ubiquitin and SUMO function have been predominantly driven by studies in cell systems and by in vitro approaches. Investigations of post-translational modifications in Caenorhabditis elegans promises new avenues in ubiquitin and SUMO research. It enables a whole organism approach to study post-translational modifications in development, stress, ageing and in disease models. The biochemical mechanisms of ubiquitin and SUMO modifications are essentially conserved in C. elegans and have been described elsewhere. Thus, this review focuses on emerging research areas where research in C. elegans is advantageous and strongly advances the field of post-translational modifications by ubiquitin and SUMO.


Assuntos
Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/metabolismo , Estresse Fisiológico/genética , Sumoilação , Ubiquitinação , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Imunidade Inata , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteostase/genética , Proteostase/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia
6.
Front Neurosci ; 13: 205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906249

RESUMO

The nematode Caenorhabditis elegans expresses the ten-1 gene that encodes teneurin. TEN-1 protein is expressed throughout the life of C. elegans. The loss of ten-1 function results in embryonic and larval lethality, highlighting its importance for fundamental processes during development. TEN-1 is expressed in the epidermis and neurons. Defects in neuronal pathfinding and epidermal closure are characteristic of ten-1 loss-of-function mutations. The molecular mechanisms of TEN-1 function in neurite outgrowth, neuronal pathfinding, and dendritic morphology in C. elegans are largely unknown. Its genetic redundancy with the extracellular matrix receptors integrin and dystroglycan and genetic interactions with several basement membrane components suggest a role for TEN-1 in the maintenance of basement membrane integrity, which is essential for neuronal guidance. Identification of the lat-1 gene in C. elegans, which encodes latrophilin, as an interaction partner of ten-1 provides further mechanistic insights into TEN-1 function in neuronal development. However, receptor-ligand interactions between LAT-1 and TEN-1 remain to be experimentally proven. The present review discusses the function of teneurin in C. elegans, with a focus on its involvement in the formation of receptor signaling complexes and neuronal networks.

7.
Sci Rep ; 8(1): 1139, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348603

RESUMO

Post-translational modification by small ubiquitin-related modifier (SUMO) is a key regulator of cell physiology, modulating protein-protein and protein-DNA interactions. Recently, SUMO modifications were postulated to be involved in response to various stress stimuli. We aimed to identify the near complete set of proteins modified by SUMO and the dynamics of the modification in stress conditions in the higher eukaryote, Caenorhabditis elegans. We identified 874 proteins modified by SUMO in the worm. We have analyzed the SUMO modification in stress conditions including heat shock, DNA damage, arsenite induced cellular stress, ER and osmotic stress. In all these conditions the global levels of SUMOylation was significantly increased. These results show the evolutionary conservation of SUMO modifications in reaction to stress. Our analysis showed that SUMO targets are highly conserved throughout species. By comparing the SUMO targets among species, we approximated the total number of proteins modified in a given proteome to be at least 15-20%. We developed a web server designed for convenient prediction of potential SUMO modification based on experimental evidences in other species.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Evolução Molecular , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Biologia Computacional/métodos , Expressão Gênica , Regulação da Expressão Gênica , Ligação Proteica , Mapas de Interação de Proteínas , Proteoma , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Estresse Fisiológico , Sumoilação
8.
Methods Mol Biol ; 1449: 291-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27613044

RESUMO

Protein modification by SUMO proteins is one of the key posttranslational modifications in eukaryotes. Here, we describe a workflow to analyze SUMO dynamics in response to different stimuli, purify SUMO conjugates, and analyze the changes in SUMOylation level in organisms, tissues, or cell culture. We present a protocol for lysis in denaturing conditions that is compatible with downstream IMAC and antibody affinity purification, followed by mass spectrometry and data analysis.


Assuntos
Espectrometria de Massas/métodos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Humanos , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação/genética , Sumoilação/fisiologia
9.
Mol Biol Cell ; 19(9): 3898-908, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18632986

RESUMO

The Caenorhabditis elegans teneurin ortholog, ten-1, plays an important role in gonad and pharynx development. We found that lack of TEN-1 does not affect germline proliferation but leads to local basement membrane deficiency and early gonad disruption. Teneurin is expressed in the somatic precursor cells of the gonad that appear to be crucial for gonad epithelialization and basement membrane integrity. Ten-1 null mutants also arrest as L1 larvae with malformed pharynges and disorganized pharyngeal basement membranes. The pleiotropic phenotype of ten-1 mutant worms is similar to defects found in basement membrane receptor mutants ina-1 and dgn-1 as well as in the mutants of the extracellular matrix component laminin, epi-1. We show that the ten-1 mutation is synthetic lethal with mutations of genes encoding basement membrane components and receptors due to pharyngeal or hypodermal defects. This indicates that TEN-1 could act redundantly with integrin INA-1, dystroglycan DGN-1, and laminin EPI-1 in C. elegans development. Moreover, ten-1 deletion sensitizes worms to loss of nidogen nid-1 causing a pharynx unattached phenotype in ten-1;nid-1 double mutants. We conclude that TEN-1 is important for basement membrane maintenance and/or adhesion in particular organs and affects the function of somatic gonad precursor cells.


Assuntos
Membrana Basal/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Distroglicanas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/embriologia , Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Faringe/embriologia , Animais , Caenorhabditis elegans , Deleção de Genes , Laminina/química , Glicoproteínas de Membrana/química , Mutação , Isoformas de Proteínas , Interferência de RNA
10.
Dev Biol ; 282(1): 27-38, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15936327

RESUMO

ten-m (odz) is the only pair-rule gene discovered in Drosophila that encodes a transmembrane protein and not a transcription factor. The vertebrate Ten-m orthologues have been implicated in pattern formation and neuronal development. To investigate the role of this protein in development, we characterize here the structure and function of the Caenorhabditis elegans orthologue ten-1. We found that two promoters control the expression of two different ten-1 transcripts. This results in the expression of type II transmembrane protein variants differing in their intracellular domains. Both ten-1 transcripts show complex, but distinct, expression patterns during development and in the adult. Interference with Ten-1 expression by RNAi experiments leads to multiple phenotypes resulting in defects in hypodermal cell migration, neuronal migration, pathfinding and fasciculation, distal tip cell migration, the establishment of the somatic gonad, and gametogenesis. The RNAi phenotypes were confirmed by the analysis of a deletion mutant which revealed that Ten-1 is essential for somatic gonad formation. The intracellular domain of the long form was detected at the cell membrane and in the nucleus. We propose that Ten-1 acts as a receptor for morphogenetic cue(s) and directly signals to the nucleus by translocation of its intracellular domain to the nucleus following its proteolytic release from the cell membrane.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Movimento Celular/fisiologia , Epiderme/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Proteínas de Membrana/genética , Morfogênese , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteínas de Caenorhabditis elegans/metabolismo , Primers do DNA , DNA Complementar/genética , Componentes do Gene , Deleção de Genes , Gônadas/fisiologia , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Neurônios/fisiologia , Interferência de RNA , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...