Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3212, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587242

RESUMO

Majorana zero modes are leading candidates for topological quantum computation due to non-local qubit encoding and non-abelian exchange statistics. Spatially separated Majorana modes are expected to allow phase-coherent single-electron transport through a topological superconducting island via a mechanism referred to as teleportation. Here we experimentally investigate such a system by patterning an elongated epitaxial InAs-Al island embedded in an Aharonov-Bohm interferometer. With increasing parallel magnetic field, a discrete sub-gap state in the island is lowered to zero energy yielding persistent 1e-periodic Coulomb blockade conductance peaks (e is the elementary charge). In this condition, conductance through the interferometer is observed to oscillate in a perpendicular magnetic field with a flux period of h/e (h is Planck's constant), indicating coherent transport of single electrons through the islands, a signature of electron teleportation via Majorana modes.

2.
Phys Rev Lett ; 124(22): 226801, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567899

RESUMO

We demonstrate concomitant measurement of phase-dependent critical current and Andreev bound state spectrum in a highly transmissive InAs Josephson junction embedded in a dc superconducting quantum interference device (SQUID). Tunneling spectroscopy reveals Andreev bound states with near unity transmission probability. A nonsinusoidal current-phase relation is derived from the Andreev spectrum, showing excellent agreement with the one extracted from the SQUID critical current. Both measurements are reconciled within a short junction model where multiple Andreev bound states, with various transmission probabilities, contribute to the entire supercurrent flowing in the junction.

3.
Phys Rev Lett ; 121(25): 256803, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608825

RESUMO

We present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without subgap states, Coulomb blockade reveals Cooper-pair mediated transport. When subgap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti)crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling. Overall results are consistent with a picture of overlapping Majorana zero modes in finite wires.

4.
Nano Lett ; 17(2): 1200-1203, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28072541

RESUMO

We demonstrate the transfer of the superconducting properties of NbTi, a large-gap high-critical-field superconductor, into an InAs heterostructure via a thin intermediate layer of epitaxial Al. Two device geometries, a Josephson junction and a gate-defined quantum point contact, are used to characterize interface transparency and the two-step proximity effect. In the Josephson junction, multiple Andreev reflections reveal near-unity transparency with an induced gap Δ* = 0.50 meV and a critical temperature of 7.8 K. Tunneling spectroscopy yields a hard induced gap in the InAs adjacent to the superconductor of Δ* = 0.43 meV with substructure characteristic of both Al and NbTi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...