Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Res ; 91(1): 10-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361413

RESUMO

This research paper addresses the hypothesis that there is an optimal amount of intestinally available oleic acid (provided via abomasal infusion) to produce higher-oleic acid milk fat with satisfactory functional characteristics of cream and butter oil. A control and four increasing doses of free fatty acids from high oleic sunflower oil (HOSFA) were infused into the abomasum of four lactating dairy cows in a crossover experimental design with 7-d periods. Treatments were: (1) control (no HOSFA infused), (2) HOSFA (250 g/d), (3) HOSFA (500 g/d), (4) HOSFA (750 g/d), and (5) HOSFA (1000 g/d). All treatments included meat solubles and Tween 80 as emulsifiers. Viscosity, overrun and whipping time as well as foam firmness and stability were evaluated in whipping creams (33% fat). Solid fat content (from 0 to 40°C), melting point and firmness were determined in butter oil. Whipping time of cream increased linearly and viscosity decreased linearly as infusion of HOSFA increased. Overrun displayed a quadratic response, decreasing when 500 g/d or more was infused. Foam firmness and stability were not affected significantly by HOSFA. For butter oil, melting point, firmness, and solid fat content decreased as HOSFA infusion increased. Changes in 21 TG fractions were statistically correlated to functional properties, with 6-10 fractions showing the highest correlations consistently. Decisions on the optimal amount of HOSFA were dependent on the dairy product to which milk fat is applied. For products handled at commercial refrigeration temperatures, such as whipping cream and butter oil, the 250 g/d level was the limit to maintain satisfactory functional qualities. Palmitic acid needed to be present in at least 20% in milk fat to keep the functional properties for the products.


Assuntos
Abomaso , Leite , Ácido Oleico , Óleos de Plantas , Óleo de Girassol , Animais , Bovinos , Feminino , Leite/química , Viscosidade , Óleo de Girassol/química , Abomaso/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Estudos Cross-Over , Lactação/efeitos dos fármacos , Manipulação de Alimentos/métodos
2.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 12-27, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35119129

RESUMO

Our objective was to determine the effects of chemical structure, amount, and site of infusion of long-chain fatty acids (LCFA) in lactating dairy cows. Six multiparous Holstein cows were used in a 6 × 6 Latin square design with 21-d periods. During d 1 to 14, 250 g/d of LCFA and during d 15 to 21, 500 g/d of LCFA were infused continuously into either the rumen or abomasum. Treatments were 1) Control (CONT); 200 g/d of meat solubles plus 12 g/d of Tween 80 in 10 L of water, administered half in the rumen and half in abomasum; 2) control plus mostly saturated LCFA into the abomasum (SFAA); 3) control plus mostly saturated LCFA into the rumen (SFAR); 4) control plus soy (mostly unsaturated LCFA) free fatty acids (FFA) into the abomasum (UFAA); 5) control plus soy triglycerides (TG) into the abomasum (TGA); and 6) control plus soy TG into the rumen (TGR). The first 10 d of each period were for adaptation and washout from the previous treatment. The diet consisted of 30% (dry matter basis) corn silage, 20% alfalfa silage and 50% concentrate. Cows infused with UFAA had lower dry matter intake and milk yield than those infused with SFAA or TGA and reductions were greater at the higher infusion amount. Milk fat yield was decreased by UFAA relative to other treatments. Unsaturated LCFA decreased milk fat yield more than saturated LCFA. All LCFA treatments decreased short- and medium-chain FA in milk relative to CONT, with greatest decreases for UFAA. Apparent total tract digestibilities of nutrient fractions were decreased by UFAA compared with TGA and SFAA and tended to be lower at the higher infusion amount. Apparent digestibility of total fatty acids (FA) was greater for SFAR than for SFAA. Plasma glucagon-like peptide-1 was greater for cows infused with UFAA than SFAA or TGA and increased at the higher amount. Plasma cholecystokinin was greater for cows infused with LCFA compared with CONT. Postruminal unsaturated FFA reduced intake and digestibility of nutrients and FA compared with postruminal TG infusion; saturated FA did not decrease dry matter intake or disrupt nutrient digestion. Glucagon-like peptide-1 may be involved in regulation of feed intake by long-chain fatty acids.


Assuntos
Ácidos Graxos , Lactação , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Lactação/fisiologia , Abomaso , Rúmen/fisiologia , Esterificação , Digestão , Leite/química , Ácidos Graxos não Esterificados , Dieta/veterinária , Triglicerídeos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31908775

RESUMO

BACKGROUND: The aim of the study was to investigate the effect of energy overfeeding during the dry period on adipose tissue transcriptome profiles during the periparturient period in dairy cows. METHODS: Fourteen primiparous Holstein cows from a larger cohort receiving a higher-energy diet (1.62 Mcal of net energy for lactation/kg of dry matter; 15% crude protein) for ad libitum intake to supply 150% (OVR) or 100% (CTR) of energy requirements from dry off until parturition were used. After calving, all cows received the same lactation diet. Subcutaneous adipose tissue (SAT) biopsies were collected at - 14, 1, and 14 d from parturition (d) and used for transcriptome profiling using a bovine oligonucleotide microarray. Data mining of differentially expressed genes (DEG) between treatments and due to sampling time was performed using the Dynamic Impact Approach (DIA) and Ingenuity Pathway Analysis (IPA). RESULTS: There was a strong effect of over-feeding energy on DEG with 2434 (False discovery rate-corrected P < 0.05) between OVR and CTR at - 14 d, and only 340 and 538 at 1 and 14 d. The most-impacted and activated pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database that were highlighted by DIA analysis at - 14 d in OVR vs. CTR included 9 associated with carbohydrate metabolism, with 'Pyruvate metabolism', 'Glycolysis/gluconeogenesis', and 'Pentose phosphate pathway' among the most-activated. Not surprisingly, OVR led to marked activation of lipid metabolism (e.g. 'Fatty acid biosynthesis' and 'Glycerolipid metabolism'). Unexpected metabolic pathways that were activated at - 14 d in OVR included several related to metabolism of amino acids (e.g. branched chain) and of cofactors and vitamins (thiamin). Among endocrine and immune system pathways, at - 14 d OVR led to marked activation of 'PPAR signalling' and 'Antigen processing and presentation'. Among key pathways affected over time in OVR, a number were related to translation (e.g. mTOR signaling), endocrine/immune signaling (CXCR4 and IGF1), and lipid metabolism (oxidative phosphorylation) with greater activation in OVR vs. CTR specifically at - 14 d. Although statistical differences for several pathways in OVR vs. CTR nearly disappeared at 1 and 14 vs. - 14 d, despite the well-known catabolic state of adipose depots after calving, the bioinformatics analyses suggested important roles for a number of signaling mechanisms at - 14 vs. 14 than 1 vs. -14 d. This was particularly evident in cows fed to meet predicted energy requirements during the dry period (CTR). CONCLUSIONS: Data underscored a strong activation by overfeeding energy of anabolic processes in the SAT exclusively prepartum. The study confirmed that higher-energy diets prepartum drive a transcriptional cascade of events orchestrated in part by the activation of PPARγ that regulate preadipocyte differentiation and lipid storage in SAT. Novel aspects of SAT biology to energy overfeeding or change in physiologic state also were uncovered, including the role of amino acid metabolism, mTOR signaling, and the immune system.

5.
Asian-Australas J Anim Sci ; 31(5): 677-685, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29103282

RESUMO

OBJECTIVE: The objective of the present study was to determine ammonium chloride tolerance of lactating dairy cows, by examining effects of negative dietary cation anion difference (DCAD) induced by ruminal ammonium chloride infusion on performance, serum and urine minerals, serum metabolites and enzymes of lactating dairy cows. METHODS: Four primiparous lactating Chinese Holstein cows fitted with ruminal cannulas were infused with increasing amounts (0, 150, 300, or 450 g/d) of ammonium chloride in a crossover design. The DCAD of the base diet was 279 mEq/kg dry matter (DM) using the DCAD formula (Na + K - Cl - S)/kg of DM. Ammonium chloride infusion added the equivalent of 0, 128, 330, and 536 mEq/kg DM of Cl in treatments. According to the different dry matter intakes (DMI), the resulting actual DCAD of the four treatments was 279, 151, -51, and -257 mEq/kg DM, respectively. RESULTS: DMI decreased linearly as DCAD decreased. Yields of milk, 4% fat-corrected milk, energy-corrected milk, milk fat, and milk protein decreased linearly as DCAD decreased. Concentrations of milk protein and milk urea nitrogen increased linearly with decreasing DCAD. Concentration of Cl- in serum increased linearly and concentration of PO43- in serum increased quadratically as DCAD decreased. Urine pH decreased linearly and calculated urine volume increased linearly with decreasing DCAD. Linear increases in daily urinary excretion of Cl-, Ca2+, PO43-, urea N, and ammonium were observed as DCAD decreased. Activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transferase in serum and urea N concentration in serum increased linearly as DCAD decreased. CONCLUSION: In conclusion, negative DCAD induced by ruminal ammonium chloride infusion resulted in a metabolic acidosis, had a negative influence on performance, and increased serum enzymes indicating potential liver and kidney damage in lactating dairy cows. Daily ammonium chloride intake by lactating dairy cows should not exceed 300 g, and 150 g/d per cow may be better.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28781774

RESUMO

BACKGROUND: The objective of the study was to evaluate the effect of overfeeding a moderate energy diet and a 2,4-thiazolidinedione (TZD) injection on blood and hepatic tissue biomarkers of lipid metabolism, oxidative stress, and inflammation as it relates to insulin sensitivity. RESULTS: Fourteen dry non-pregnant cows were fed a control (CON) diet to meet 100% of NRC requirements for 3 wk, after which half of the cows were assigned to a moderate-energy diet (OVE) and half of the cows continued on CON for 6 wk. All cows received an intravenous injection of 4 mg TZD/kg of body weight (BW) daily from 2 wk after initiation of dietary treatments and for 2 additional week. Compared with CON cows and before TZD treatment, the OVE cows had lower concentration of total protein, urea and albumin over time. The concentration of cholesterol and tocopherol was greater after 2 wk of TZD regardless of diet. Before and after TZD, the OVE cows had greater concentrations of AST/GOT, while concentrations of paraoxonase, total protein, globulin, myeloperoxidase, and haptoglobin were lower compared with CON cows. Regardless of diet, TZD administration increased the concentration of ceruloplasmin, ROMt, cholesterol, tocopherol, total protein, globulin, myeloperoxidase and beta-carotene. In contrast, the concentration of haptoglobin decreased at the end of TZD injection regardless of diet. Prior to TZD injection, the mRNA expression of PC, ANGPTL4, FGF21, INSR, ACOX1, and PPARD in liver of OVE cows was lower compared with CON cows. In contrast, the expression of HMGCS2 was greater in OVE compared with CON cows. After 1 wk of TZD administration the expression of IRS1 decreased regardless of diet; whereas, expression of INSR increased after 2 wk of TZD injection. Cows fed OVE had lower overall expression of TNF, INSR, PC, ACOX1, FGF21, and PPARD but greater HMGCS2 expression. These differences were most evident before and after 1 wk of TZD injection, and by 2 wk of TZD differences in expression for most genes disappeared. CONCLUSIONS: Based on molecular and blood data, administration of TZD enhanced some aspects of insulin sensitivity while causing contradictory results in terms of inflammation and oxidative stress. The bovine liver is TZD-responsive and level of dietary energy can modify the effects of TZD. Because insulin sensitizers have been proposed as useful tools to manage dairy cows during the transition period, further studies are required to investigate the potential hepatotoxicity effect of TZD (or similar compounds) in dairy cattle.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26962451

RESUMO

BACKGROUND: Main objectives were to determine to what extent Smartamine M (SM) supplementation to a prepartal higher-energy diet could alter neutrophil (PMN) and liver tissue immunometabolic biomarkers, and whether those responses were comparable to those in cows fed a prepartal lower-energy diet (CON). RESULTS: Twenty-eight multiparous Holstein cows were fed CON (NEL = 1.24 Mcal/kg DM) during d -50 to d -22 relative to calving. From d -21 to calving, cows were randomly assigned to a higher-energy diet (OVE, n = 9; NEL = 1.54 Mcal/kg DM), OVE plus SM (OVE + SM, n = 10; SM = 0.07 % of DM) or remained on CON (n = 9). All cows received the same basal lactation diet (NEL = 1.75 Mcal/kg DM). Supplementation of SM (OVE + SM) continued until 30 d postpartum. Liver biopsies were harvested at d -10, 7, and 21 relative to parturition. Blood PMN isolated at -10, 3, and 21 d relative to calving was used to evaluate gene expression. As expected, OVE increased liver lipid content postpartum; however, cows fed OVE + SM or CON had lower concentrations than OVE. Compared with OVE, cows in CON and OVE + SM had greater DMI postpartum and milk production. Furthermore, cows fed OVE + SM had the greatest milk protein and fat percentage and lowest milk SCC despite having intermediate PMN phagocytic capacity. Adaptations in PMN gene expression in OVE + SM cows associated with the lower SCC were gradual increases from -10 to 21 d in genes that facilitate migration into inflammatory sites (SELL, ITGAM), enzymes essential for reducing reactive oxygen metabolites (SOD1, SOD2), and a transcription factor(s) required for controlling PMN development (RXRA). The greater expression of TLR4 on d 3, key for activation of innate immunity due to inflammation, in OVE compared with CON cows suggests a more pronounced inflammatory state. Feeding OVE + SM dampened the upregulation of TLR4, despite the fact that these cows had similar expression of the pro-inflammatory genes NFKB1 and TNF as OVE. Cows in CON had lower overall expression of these inflammation-related genes and GSR, which generates reduced glutathione, an important cellular antioxidant. CONCLUSIONS: Although CON cows appeared to have a less stressful transition into lactation, SM supplementation was effective in alleviating negative effects of energy-overfeeding. As such, SM was beneficial in terms of production and appeared to boost the response of PMN in a way that improved overall cow health.

8.
PLoS One ; 10(11): e0142633, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571137

RESUMO

The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate carbohydrate metabolism and fatty acid oxidation, the OVE cows had greater glyceroneogenesis (higher mRNA expression of PC and PCK1), whereas CON cows had greater glucose transport (SLC2A4). Administration of TZD increased triacylglycerol concentration and altered expression of carbohydrate- and fatty acid oxidation-related genes in skeletal muscle. Results indicate that overfeeding did not affect insulin sensitivity in nonpregnant, nonlactating dairy cows. The bovine PPARG receptor appears TZD-responsive, with its activation potentially leading to greater adipogenesis and lipogenesis in SAT, while differentially regulating glucose homeostasis and fatty acid oxidation in skeletal muscle. Targeting PPARG via dietary nutraceuticals while avoiding excessive fat deposition might improve insulin sensitivity in dairy cows during times such as the peripartal period when the onset of lactation naturally decreases systemic insulin release and sensitivity in tissues such as AT.


Assuntos
Tecido Adiposo/metabolismo , Dieta/veterinária , Ingestão de Energia/fisiologia , Resistência à Insulina , Músculo Esquelético/metabolismo , Tiazolidinedionas/química , Ácido 3-Hidroxibutírico/sangue , Adiposidade/efeitos dos fármacos , Ração Animal , Animais , Biópsia , Glicemia/análise , Índice de Massa Corporal , Peso Corporal , Bovinos , Ácidos Graxos/sangue , Feminino , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Insulina/metabolismo , PPAR gama/metabolismo , Reação em Cadeia da Polimerase , Triglicerídeos/metabolismo
9.
PLoS One ; 10(10): e0139963, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451842

RESUMO

In rodents, fibroblast growth factor 21 (FGF21) has emerged as a key metabolic regulator produced by liver. To gather preliminary data on the potential importance of FGF1, co-regulated genes, and upstream metabolic genes, we examined the hepatic mRNA expression in response to nutrition and inflammation in dairy cows. In experiment 1, induction of ketosis through feed restriction on d 5 postpartum upregulated FGF21, its co-receptor KLB, and PPARA but only elicited a numerical increase in serum FGF21 concentration. In experiment 2, cows in control (CON) or receiving 50 g/d of L-carnitine (C50) from -14 through 21 d had increased FGF21, PPARA, and NFIL3 on d 10 compared with d 2 postpartum. In contrast, compared with CON and C50, 100 g/d L-carnitine (C100) resulted in lower FGF21, KLB, ANGPTL4, and ARNTL expression on d 10. In experiment 3, cows were fed during the dry period either a higher-energy (OVE; 1.62 Mcal/kg DM) or lower-energy (CON; 1.34 Mcal/kg DM) diet and received 0 (OVE:N, CON:N) or 200 µg of LPS (OVE:Y, CON:Y) into the mammary gland at d 7 postpartum. For FGF21 mRNA expression in CON, the LPS challenge (CON:Y) prevented a decrease in expression between d 7 and 14 postpartum such that cows in CON:N had a 4-fold lower expression on d 14 compared with d 7. The inflammatory stimulus induced by LPS in CON:Y resulted in upregulation of PPARA on d 14 to a similar level as cows in OVE:N. In OVE:Y, expression of PPARA was lower than CON:N on d 7 and remained unchanged on d 14. On d 7, LPS led to a 4-fold greater serum FGF21 only in OVE but not in CON cows. In fact, OVE:Y reached the same serum FGF21 concentration as CON:N, suggesting a carryover effect of dietary energy level on signaling mechanisms within liver. Overall, results indicate that nutrition, ketosis, and inflammation during the peripartal period can alter hepatic FGF21, co-regulated genes, and upstream metabolic genes to various extents. The functional outcome of these changes merits further study, and in particular the mechanisms regulating transcription in response to changes in energy balance and feed intake.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Inflamação , Cetose , Fígado/metabolismo , Angiopoietinas/genética , Angiopoietinas/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Carnitina/farmacologia , Bovinos , Ritmo Circadiano/efeitos dos fármacos , Suplementos Nutricionais , Regulação para Baixo/efeitos dos fármacos , Ingestão de Energia , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Insulina/metabolismo , Lipopolissacarídeos/toxicidade , PPAR alfa/genética , PPAR alfa/metabolismo , Período Pós-Parto , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
10.
Funct Integr Genomics ; 14(1): 261-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24318765

RESUMO

This study assessed the effects of enhanced dietary plane of nutrition (early nutritional program (ENH)) on the gene expression pattern of ruminal epithelial tissue of young Holstein calves. Male Holstein calves were fed (3 to 42 days of age) with reconstituted control milk replacer (MR) (20 % crude protein, 20 % fat; 1.25 lb solids/calf) plus conventional starter (CON; 19.6 % crude protein, dry matter basis) or a high-protein MR (ENH; 28.5 % crude protein, 15 % fat; at around 2 % of body weight) plus high-crude protein starter (25.5 % crude protein, dry matter basis). The calves were weaned on day 43. Groups of calves in CON and ENH treatment were harvested after 5 and 10 weeks of feeding. The ruminal epithelium from five calves in each group was used for transcript profiling using a bovine oligonucleotide microarray. The postweaning mass of the reticulo-rumen was greater (P < 0.01) in calves consuming ENH. Transcriptome analysis revealed that 208 genes were altered due to treatment and 587 due to time alone. Bioinformatics analysis revealed that "galactose metabolism," "citrate cycle," "pyruvate metabolism," and "basal transcription factors" were the most impacted and induced pathways due to feeding ENH; whereas, "valine, leucine, and isoleucine biosynthesis" and "glyoxylate and dicarboxylate metabolism" were among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism after weaning, particularly biosynthesis of glycan and nucleotide metabolism. Furthermore, the preweaning alterations in the transcriptome were mostly associated with cell growth, death, tissue development, and cellular morphology. The postweaning response revealed overexpression of genes associated with cell adhesion molecules, p53 signaling, and fatty acid metabolism. Our results indicated that feeding ENH to young Holstein calves elicited a strong transcriptomic response in the ruminal epithelial tissue.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Epitélio/fisiologia , Rúmen/fisiologia , Transcriptoma , Animais , Bovinos , Proteínas Alimentares/farmacologia , Regulação da Expressão Gênica , Masculino , Anotação de Sequência Molecular , Desmame
11.
Annu Rev Anim Biosci ; 1: 365-92, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387024

RESUMO

Microarray development changed the way biologists approach the holistic study of cells and tissues. In dairy cattle biosciences, the application of omics technology, from spotted microarrays to next-generation sequencing and proteomics, has grown steadily during the past 10 years. Omics has found application in fields such as dairy cattle nutritional physiology, reproduction, and immunology. Generating biologically meaningful data from omics studies relies on bioinformatics tools. Both are key components of the systems physiology toolbox, which allows study of the interactions between a condition (e.g., nutrition, physiological state) with tissue gene/protein expression and the associated changes in biological functions. The nature of physiologic and metabolic adaptations in dairy cattle at any stage of the life cycle is multifaceted, involves multiple tissues, and is dynamic, e.g., the transition from late-pregnancy to lactation. Application of integrative systems physiology in periparturient dairy cattle has already advanced knowledge of the simultaneous functional adaptations in liver, adipose, and mammary tissue.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/genética , Bovinos/genética , Bovinos/fisiologia , Genômica , Animais , Indústria de Laticínios , Feminino
12.
Funct Integr Genomics ; 11(1): 151-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20809086

RESUMO

Cows experiencing severe postpartal negative energy balance (NEB) are at greater risk of developing mastitis than cows in positive energy balance (PEB). Our objectives were to compare mammary tissue gene expression profiles between lactating cows (n = 5/treatment) subjected to feed restriction to induce NEB and cows fed ad libitum to maintain PEB in order to identify genes involved in immune response and cellular metabolism that may predispose cows to an intramammary infection in non-infected mammary gland. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements, and cows fed PEB cows were fed the same diet ad libitum. At 5 days after feed restriction, one rear mammary gland from all cows was biopsied for RNA extraction and transcript profiling using microarray and quantitative PCR. Energy balance (NEB vs. PEB) resulted in 278 differentially expressed genes (DEG). Among up-regulated DEG (n = 180), Ingenuity Pathway Analysis® identified lipid metabolism (8) and molecular transport (14) as some of the most enriched molecular functions. Genes down-regulated by NEB (98) were associated with cell growth and proliferation (21) and cell death (18). Results indicate that DEG due to NEB in mid-lactation were associated with numerous biological functions but we did not identify genes that could, a priori, be associated with risk of intramammary infection in non-infected mammary glands. Further studies with early postpartal cows are required.


Assuntos
Bovinos/imunologia , Dieta , Metabolismo Energético , Lactação/imunologia , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/imunologia , Animais , Biomarcadores/metabolismo , Bovinos/genética , Bovinos/microbiologia , Feminino , Perfilação da Expressão Gênica , Lactação/genética , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Mastite Bovina/genética , Análise de Sequência com Séries de Oligonucleotídeos
13.
Bioinform Biol Insights ; 4: 85-97, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20981268

RESUMO

Histological and functional changes associated with involution in the mammary gland are partly regulated by changes in gene expression. At 42 d postpartum, Holstein cows underwent a period of 5 d during which they were milked 1X daily until complete cessation of milking. Percutaneous mammary biopsies (n = 5/time point) were obtained on d 1, 5, 14, and 21 relative to the start of 1X milking for transcript profiling via qPCR of 57 genes associated with metabolism, apoptosis/proliferation, immune response/inflammation, oxidative stress, and tissue remodeling. Not surprisingly, there was clear downregulation of genes associated with milk fat synthesis (FASN, ACACA, CD36, FABP3, SCD) and lipid-related transcription regulation (SREBF1, SREBF2). Similar to milk fat synthesis-related genes, those encoding proteins required for glucose uptake (SLC2A1), casein synthesis (CSN2, CSN3), and lactose synthesis (LALBA) decreased during involution. Unlike metabolic genes, those associated with immune response and inflammation (C3, LTF, SAA3), oxidative stress (GPX1, SOD2), and pro-inflammatory cytokine signaling (SPP1, TNF) increased to peak levels by d 14 from the start of 1X milking. These adaptations appeared to be related with tissue remodeling as indicated by upregulation of proteins encoding matrix proteinases (MMP2), IGFBP3, and transcriptional regulation of apoptosis/cell proliferation (MYC). In contrast, the concerted upregulation of STAT3, TGFB1, and TGFB1R during the first 14 d was suggestive of an activation of these signaling pathways probably as an acute response to regulate differentiation and/or mammary cell survival upon the onset of a marked pro-inflammatory and oxidative stress response induced by the gradual reduction in milk removal. Results suggest a central role of STAT3, MYC, PPARG, SREBF1, and SREBF2 in regulating concerted alterations in metabolic and cell survival mechanisms, which were induced partly via oxidative stressed-triggered inflammation and the decline in metabolic activity.

14.
Physiol Genomics ; 41(2): 161-70, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20103698

RESUMO

Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5) to better understand the mechanisms associated with NEB and risk of mastitis during the transition period. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements for 7 days, and cows assigned to PEB were fed the same diet for ad libitum intake. Five days after feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis (O140J). At 20 h postinoculation, S. uberis-infected mammary quarters from all cows were biopsied for RNA extraction. Negative energy balance resulted in 287 differentially expressed genes (DEG; false discovery rate ≤ 0.05), with 86 DEG upregulated and 201 DEG downregulated in NEB vs. PEB. Canonical pathways most affected by NEB were IL-8 signaling (10 genes), glucocorticoid receptor signaling (13), and NRF2-mediated oxidative stress response (10). Among the genes differentially expressed by NEB, cell growth and proliferation (48) and cellular development (36) were the most enriched functions. Regarding immune response, HLA-A was upregulated due to NEB, whereas the majority of genes involved in immune response were downregulated (e.g., AKT1, IRAK1, MAPK9, and TRAF6). This study provided new avenues for investigation into the mechanisms relating NEB and susceptibility to mastitis in lactating dairy cows.


Assuntos
Restrição Calórica , Metabolismo Energético , Perfilação da Expressão Gênica/veterinária , Glândulas Mamárias Animais/imunologia , Mastite Bovina/genética , Streptococcus/patogenicidade , Animais , Biópsia/veterinária , Bovinos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Lactação , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/imunologia , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Fatores de Tempo
15.
Funct Integr Genomics ; 10(1): 53-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20072847

RESUMO

Our objectives were to compare gene expression profiles in blood polymorphonuclear cells (PMN) during a Streptococcus uberis intramammary challenge between lactating cows subjected to feed restriction to induce negative energy balance (NEB; n=5) and cows fed ad libitum to maintain positive energy balance (PEB; n=5). After 5 days of feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis. Blood PMN were isolated at 24 h post-inoculation from all cows for mRNA expression via quantitative polymerase chain reaction for 20 genes associated with immune response and metabolism. A total of 12 genes were differentially expressed in blood PMN in NEB versus PEB cows. Upregulated genes by NEB were ALOX5AP, CPNE3, IL1R2, IL6, TLR2, TLR4, and THY1, and downregulated genes were HLA-DRA, HLA-A, IRAK1, SOD1, and TNF. Network analysis revealed that TNF was associated with several of the affected genes in NEB cows compared with PEB cows. Results showed that 24 h after intramammary challenge with S. uberis, cows in NEB had altered PMN expression of genes involved with immune response. Our data provide new information on transcriptomic mechanisms associated with NEB and the corresponding inhibition of immune response in lactating dairy cows.


Assuntos
Metabolismo Energético/genética , Antígenos de Histocompatibilidade/genética , Interleucina-6/genética , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/imunologia , Neutrófilos/imunologia , Receptores Toll-Like/genética , Animais , Bovinos/sangue , Bovinos/genética , Bovinos/imunologia , Bovinos/microbiologia , Metabolismo Energético/imunologia , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Antígenos HLA-A/genética , Antígenos HLA-DR/genética , Cadeias alfa de HLA-DR , Interleucina-6/metabolismo , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Mastite Bovina/genética , Neutrófilos/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus/fisiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
16.
Anim Biotechnol ; 21(1): 25-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20024784

RESUMO

The cDNA coding for stomach lysozyme in yak was cloned. The cloned cDNA contains a 432 bp open reading frame and encodes 143 amino acids (16.24 KDa) with a signal peptide of 18 amino acids. Further analysis revealed that its amino acid sequence shares many common properties with cow milk lysozyme. Expression of this gene was also detected in mammary gland tissue by RT-PCR. Phylogenetic relationships among yak stomach lysozyme and 8 cow lysozymes indicated that the yak enzyme is more closely related to both cow milk lysozyme and the pseudogene PsiNS4 than cow stomach lysozyme. Recombinant yak lysozyme purified by Ni(2+)-column showed a molecular weight of 33.78 kDa and exhibited lytic activity against Staphylococcus aureus, providing evidence of its antibacterial activities.


Assuntos
Bovinos/genética , Muramidase/genética , Estômago de Ruminante/enzimologia , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica/genética , Genes/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Muramidase/farmacologia , Muramidase/fisiologia , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Staphylococcus aureus/efeitos dos fármacos
17.
BMC Genomics ; 10: 542, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19925655

RESUMO

BACKGROUND: Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection (IMI) with S. uberis and relate these with other physiological measurements associated with immune and/or metabolic responses to mastitis challenge with S. uberis O140J. RESULTS: Streptococcus uberis IMI resulted in 2,102 (1,939 annotated) differentially expressed genes (DEG). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each), the majority of which were signaling pathways. Among the most inhibited were LXR/RXR Signaling and PPARalpha/RXRalpha Signaling. Pathways activated by IMI were IL-10 Signaling and IL-6 Signaling which likely reflected counter mechanisms of mammary tissue to respond to infection. Of the 2,102 DEG, 1,082 were up-regulated during IMI and were primarily involved with the immune response, e.g., IL6, TNF, IL8, IL10, SELL, LYZ, and SAA3. Genes down-regulated (1,020) included those associated with milk fat synthesis, e.g., LPIN1, LPL, CD36, and BTN1A1. Network analysis of DEG indicated that TNF had positive relationships with genes involved with immune system function (e.g., CD14, IL8, IL1B, and TLR2) and negative relationships with genes involved with lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL) and antioxidant activity (SOD1). CONCLUSION: Results provided novel information into the early signaling and metabolic pathways in mammary tissue that are associated with the innate immune response to S. uberis infection. Our study indicated that IMI challenge with S. uberis (strain O140J) elicited a strong transcriptomic response, leading to potent activation of pro-inflammatory pathways that were associated with a marked inhibition of lipid synthesis, stress-activated kinase signaling cascades, and PPAR signaling (most likely PPARgamma). This latter effect may provide a mechanistic explanation for the inverse relationship between immune response and milk fat synthesis.


Assuntos
Redes Reguladoras de Genes , Metabolismo dos Lipídeos , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , PPAR gama/metabolismo , Transdução de Sinais , Streptococcus/fisiologia , Animais , Bovinos , Proliferação de Células , Biologia Computacional , Feminino , Humanos , Metabolismo dos Lipídeos/genética , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Leite/química , Leite/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais/genética , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/patologia , Regulação para Cima
18.
Vet Clin North Am Food Anim Pract ; 24(1): 55-86, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18299032

RESUMO

The general principles of growth and nutrients required are no different for young calves than for any other species. Additional complexity is introduced, however, by the need to transition the young preruminant to functioning ruminant. The nutritional and digestive physiology of dairy calves as future ruminants needs to be the governing factor in designing practical feeding systems to meet nutrient requirements. Key aspects common to all systems include the composition and amount of liquid feed, water availability, and the first starter feeds offered. This article focuses on nutrition of calves before weaning and to breeding age, with primary emphasis on the preweaning and transition phases.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Bovinos/crescimento & desenvolvimento , Necessidades Nutricionais , Rúmen/metabolismo , Desmame , Ração Animal , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/fisiologia , Fenômenos Fisiológicos do Sistema Digestório , Feminino
19.
Physiol Genomics ; 32(1): 105-16, 2007 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17925483

RESUMO

Dairy cows are highly susceptible after parturition to developing liver lipidosis and ketosis, which are costly diseases to farmers. A bovine microarray platform consisting of 13,257-annotated oligonucleotides was used to study hepatic gene networks underlying nutrition-induced ketosis. On day 5 postpartum, 14 Holstein cows were randomly assigned to ketosis-induction (n = 7) or control (n = 7) groups. Cows in the ketosis-induction group were fed at 50% of day 4 intake until they developed signs of clinical ketosis, and cows in the control group were fed ad libitum throughout the treatment period. Liver was biopsied at 10-14 (ketosis) or 14 days postpartum (controls). Feed restriction increased blood concentrations of nonesterified fatty acids and beta-hydroxybutyrate, but decreased glucose. Liver triacylglycerol concentration also increased. A total of 2,415 genes were altered by ketosis (false discovery rate = 0.05). Ingenuity Pathway Analysis revealed downregulation of genes associated with oxidative phosphorylation, protein ubiquitination, and ubiquinone biosynthesis with ketosis. Other molecular adaptations included upregulation of genes and nuclear receptors associated with cytokine signaling, fatty acid uptake/transport, and fatty acid oxidation. Genes downregulated during ketosis included several associated with cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid desaturation. Feed restriction and ketosis resulted in previously unrecognized alterations in gene network expression underlying key cellular functions and discrete metabolic events. These responses might help explain well-documented physiological adaptations to reduced feed intake in early postpartum cows and, thus, provide molecular targets that might be useful in prevention and treatment of liver lipidosis and ketosis.


Assuntos
Doenças dos Bovinos/fisiopatologia , Regulação da Expressão Gênica , Cetose/genética , Cetose/veterinária , Fígado/fisiologia , Complicações na Gravidez/veterinária , Prenhez/fisiologia , Ração Animal , Animais , Bovinos , Doenças dos Bovinos/genética , Ingestão de Energia , Feminino , Cetose/fisiopatologia , Fígado/fisiopatologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/fisiopatologia , RNA/sangue , RNA/genética , RNA/isolamento & purificação
20.
J Vet Intern Med ; 20(6): 1471-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17186867

RESUMO

BACKGROUND: Dextrose is commonly administered to postparturient dairy cows, which often have low plasma phosphorus concentration ([P]) as a result of anorexia and sudden onset of lactation. Intravenous (IV) dextrose administration causes hypophosphatemia in other species. HYPOTHESIS: Bolus administration of dextrose to postparturient dairy cows results in a transient decrease in plasma [P]. ANIMALS: Six healthy postparturient dairy cows. METHODS: Using a crossover design, cows were administered 500 mL of 50% dextrose solution IV or a sham treatment. Plasma concentrations of glucose ([glucose]), immunoreactive insulin ([IRI]), and phosphorus were monitored for 12 hours after each treatment. Urine [P], [glucose], and volume and salivary [P] were also determined. RESULTS: Plasma [glucose], [IRI], and [P] were stable during sham treatment. Plasma [P] decreased rapidly after dextrose administration, dropping by 35% in 1 hour and remaining below baseline for 90 minutes. Salivary [P], urine [P], and urine volume per hour remained stable after dextrose administration, but glucose was detected in urine for up to 6 hours. The amount of glucose excreted in urine in 12 hours (11.9+/-4.5 g) was less than 5% of the administered dose. Regression analysis revealed a stronger association between plasma [P] and [IRI] than between plasma [P] and [glucose], suggesting that hyperinsulinemia drove the hypophosphatemia. CONCLUSION AND CLINICAL IMPORTANCE: Results indicate that low plasma [P] should be expected in cows that have received IV dextrose within 1 hour before blood sampling. Caution is advised when administering dextrose solution to cows already at risk of hypophosphatemia.


Assuntos
Bovinos/sangue , Glucose/farmacocinética , Lactação/metabolismo , Fósforo/sangue , Período Pós-Parto/sangue , Animais , Área Sob a Curva , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Bovinos/metabolismo , Estudos Cross-Over , Indústria de Laticínios , Feminino , Glicosúria/veterinária , Infusões Intravenosas/veterinária , Insulina/metabolismo , Fósforo/urina , Gravidez , Urinálise/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...