Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 104(6): 1888-1898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506425

RESUMO

Anthropogenic stressors such as agriculture and urbanization can increase river turbidity, which can negatively impact fish gill morphology and growth due to reduced oxygen in the benthic environment. We assessed the gill morphology, field metabolic rate (FMR), and two hypoxia tolerance metrics (oxygen partial pressure at loss of equilibrium, PO2 at LOE, and critical oxygen tension, Pcrit) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada, from rivers in southern Ontario. Field trials were conducted streamside in the Grand River (August 2019; mean NTU 8) and in the comparatively more turbid Thames River (August 2020; mean NTU 94) to test the effect of turbidity on each physiological endpoint. Gills were collected from incidental mortalities and museum specimens, and were assessed using hematoxylin and eosin and immunofluorescent staining. The between-river comparison indicated that turbidity significantly increased interlamellar space and filament width but had no significant influence on other gill morphometrics or FMR. Turbidity significantly increased PO2 at LOE (i.e., fish had a lower hypoxia tolerance) but did not significantly impact Pcrit. Therefore, although turbidity influences hypoxia tolerance through LOE, turbidity levels were not sufficiently high in the study rivers to contribute to measurable changes in gill morphology or metabolism in the wild. Determining whether changes in gill morphology or metabolism occur under higherturbidity levels would help resolve the ecological importance of turbidity on species physiology in urban and agricultural ecosystems.


Assuntos
Brânquias , Oxigênio , Rios , Animais , Brânquias/anatomia & histologia , Brânquias/fisiologia , Ontário , Oxigênio/metabolismo , Hipóxia , Perciformes/fisiologia , Perciformes/anatomia & histologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38253199

RESUMO

Fish gills are complex organs that have direct contact with the environment and perform numerous functions including gas exchange and ion regulation. Determining if gill morphometry can change under different environmental conditions to maintain and/or improve gas exchange and ion regulation is important for understanding if gill plasticity can improve survival with increasing environmental change. We assessed gill morphology (gas exchange and ion regulation metrics), hematocrit and gill Na+/K+ ATPase activity of wild-captured blackside darter (Percina maculata), greenside darter (Etheostoma blennioides), and johnny darter (Etheostoma nigrum) at two temperatures (10 and 25 °C) and turbidity levels (8 and 94 NTU). Samples were collected August and October 2020 in the Grand River to assess temperature differences, and August 2020 in the Thames River to assess turbidity differences. Significant effects of temperature and/or turbidity only impacted ionocyte number, lamellae width, and hematocrit. An increase in temperature decreased ionocyte number while an increase in turbidity increased lamellae width. Hematocrit had a species-specific response for both temperature and turbidity. Findings suggest that the three darter species have limited plasticity in gill morphology, with no observed compensatory changes in hematocrit or Na+/K+ ATPase activity to maintain homeostasis under the different environmental conditions.


Assuntos
Brânquias , Rios , Animais , Temperatura , Brânquias/metabolismo , Sódio/metabolismo , Adenosina Trifosfatases , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
Mov Ecol ; 11(1): 77, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093397

RESUMO

Animal movement is increasingly affected by human alterations to habitat and climate change. In wetland systems, widespread hydrologic alterations from agriculture have changed the shape, function, and stability of shallow streams and wetland habitats. These changes in habitat quality and quantity may be especially consequential for freshwater fishes such as Grass Pickerel (Esox americanus vermiculatus), a small predatory fish found in disjunct populations across southern Ontario and listed as Special Concern under Canada's Species at Risk Act. To characterize Grass Pickerel movement response to stream-channel alterations, Fisheries and Oceans Canada implemented a tracking study to monitor the movements of a Grass Pickerel population in an agricultural drain on the Niagara Peninsula (Ontario, Canada). From 2009 to 2013, 2007 Grass Pickerel were tagged and tracked in the 37.3 km2 Beaver Creek watershed using a combination of mark-recapture surveys and eight fully automated passive integrated transponder tag antennas. Most individuals moved within 500 m (i.e., stationary fish) while 16% of the fish moved > 500 m (i.e., mobile fish), with a maximum median movement distance of 1.89 km and a maximum movement distance of 13.5 km (a long-tail distribution). Most movements occurred near the largest confluence where only a few were long-distance upstream or downstream movements. Mobile fish were larger than their stationary counterparts. Grass Pickerel in sites with higher abundance had more mobile fish, implying potential density dependence. Our results highlight that, while a long-distance dispersal ability exists in extant Grass Pickerel populations, the current conditions of riverscapes may prevent these dispersals from occurring. For declining Grass Pickerel populations, limitations to their movement ecology may substantially increase the likelihood of local extirpations.

4.
Biol Invasions ; 25(11): 3567-3581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37743906

RESUMO

Bighead Carp currently threatens to invade the Laurentian Great Lakes from the Mississippi River, but the novel climatic conditions it will encounter by expanding northwards could affect its population performance. Bighead Carp in colder climates exhibits slower growth and matures later, with later maturation typically leading to larger adult size and increased fecundity and survival. Accordingly, the life-history strategies of Bighead Carp at its northern range limits could differ from those observed in its current invaded range. To explore how population performance could differ across changing environmental conditions, we used a stage- and age-based matrix population model parameterized with values reported for Bighead Carp populations around the world. The model was used to evaluate how different ages of maturity and their resulting impacts to body size, survival, and fecundity could impact rates of population growth and establishment. Age of maturity had a non-linear effect on population growth, with maturation at intermediate ages (4-6 years) resulting in better performance. However, performance differed less between maturation ages when fecundity was allowed to increase disproportionately with body size. Greater population growth at younger ages of maturity suggest that invasion at lower latitudes could enable establishment in fewer years due to faster rates of development in warmer temperatures. Across all maturation schedules, population growth was most sensitive to the recruitment of age-1 individuals and least sensitive to adult survival, and vital rates overall varied more in their contribution to population growth at younger ages of maturity. Thus, understanding the factors that control age-1 recruitment would inform projections of population performance for Bighead Carp in the Laurentian Great Lakes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-023-03126-z.

5.
Prev Vet Med ; 217: 105960, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37478526

RESUMO

Emerging diseases of wildlife are an existential threat to biodiversity, and human-mediated movements of live animals are a primary vector of their spread. Wildlife disease risk analyses offer an appealing alternative to precautionary approaches because they allow for explicit quantification of uncertainties and consideration of tradeoffs. Such considerations become particularly important in high-frequency invasion pathways with hundreds of thousands of individual vectors, where even low pathogen prevalence can lead to substantial risk. The purpose of this study was to examine the landscape-level dynamics of human behavior-mediated pathogen introduction risk in the context of a high-frequency invasion pathway. One such pathway is the use and release of live fish used as bait by recreational anglers. We used a stochastic risk assessment model parameterized by angler survey data from Minnesota, USA, to simulate one year of fishing in Minnesota and estimate the total number of risky trips for each of three pathogens: viral hemorrhagic septicemia virus, the microsporidian parasite Ovipleistophora ovariae, and the Asian fish tapeworm Schizocotyle acheilognathi. We assessed the number of introductions under four scenarios: current/baseline conditions, outbreak conditions (increased pathogen prevalence), source-focused control measures (decreased pathogen prevalence), and angler-focused control measures (decreased rates of release). We found that hundreds of thousands of introduction events can occur per year, even for regulated pathogens at low pathogen prevalence. Reducing the rate of illegal baitfish release had significant impact on risky trips in scenarios where a high number of anglers were involved, but was less impactful in circumstances with limited outbreaks and fewer affected anglers. In contrast, reducing pathogen prevalence in the source populations of baitfish had relatively little impact. In order to make meaningful changes in pathogen introduction risk, managers should focus efforts on containing local outbreaks and reducing illegal baitfish release to reduce pathogen introduction risk. Our study also demonstrates the risk associated with high-frequency invasion pathways and the importance of incorporating human behaviors into wildlife disease models and risk assessments.


Assuntos
Biodiversidade , Taenia , Humanos , Animais , Incerteza , Surtos de Doenças , Pesqueiros
6.
Conserv Physiol ; 11(1): coad008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926473

RESUMO

Metabolic rate and hypoxia tolerance are highly variable among individual fish in a stable environment. Understanding the variability of these measures in wild fish populations is critical for assessing adaptive potential and determining local extinction risks as a result of climate-induced fluctuations in temperature and hypoxic conditions. We assessed the field metabolic rate (FMR) and two hypoxia tolerance metrics, oxygen pressure at loss of equilibrium (PO2 at LOE) and critical oxygen tolerance (Pcrit) of wild-captured eastern sand darter (Ammocrypta pellucida), a threatened species in Canada, using field trials (June to October) that encompassed ambient water temperatures and oxygen conditions typically experienced by the species. Temperature was significantly and positively related to hypoxia tolerance but not FMR. Temperature alone explained 1%, 31% and 7% of the variability observed in FMR, LOE, and Pcrit, respectively. Environmental and fish-specific factors such as reproductive season and condition explained much of the residual variation. Reproductive season significantly affected FMR by increasing it by 159-176% over the tested temperature range. Further understanding the impact of reproductive season on metabolic rate over a temperature range is crucial for understanding how climate change could impact species fitness. Among-individual variation in FMR significantly increased with temperature while among-individual variation in both hypoxia tolerance metrics did not. A large degree of variation in FMR in the summer might allow for evolutionary rescue with increasing mean and variance of global temperatures. Findings suggest that temperature may be a weak predictor in a field setting where biotic and abiotic factors can act concurrently on variables that affect physiological tolerance.

7.
J Fish Biol ; 102(4): 968-976, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789615

RESUMO

Investigation of the reproductive phenology and spawning behaviour of imperilled species in relation to environmental variability is needed to understand a critical component of species life history. In this study, we used redside dace (Clinostomus elongatus), a freshwater leuciscid listed as Endangered under Canada's Species at Risk Act, to model spawning phenology and make predictions about spawning initiation using historical and climate change projected thermal cues (measured as cumulative growing degree days), and provide an ethological description of spawning behaviour. Logistic regression models applied to 4 years of average daily stream water temperature data and field behavioural observations of the onset of spawning activity indicated a 50% probability of spawning initiation when cumulative growing degree days reached 214°C days and a 95% probability of spawning initiation at 288°C days. Using two climate change scenarios (i.e., a mid-century 1.6°C increase and an end of century 3.6°C increase), spawning initiation was predicted to advance 3 days by the year 2050 and 7 days by the year 2100. Underwater video cameras placed at two sites within an urban stream captured 73 unique spawning events revealing that redside dace spawn in pairs as well as in dense, tightly packed groups (more than 20 individuals). Moreover, there is evidence of redside dace having a polygynandrous mating system, as female redside dace spawned with multiple males in 45.2% of the total spawning events recorded. Taken together, this study provides important insights into redside dace spawning initiation and behaviour, key life-history traits having conservation implications for future reproductive success and, ultimately, population dynamics.


Assuntos
Cyprinidae , Rios , Masculino , Feminino , Animais , Reprodução , Mudança Climática , Água
8.
Biol Invasions ; 24(9): 2885-2903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990590

RESUMO

Numerous fish species in the Laurentian Great Lakes have been negatively impacted by the establishment of the invasive Round Goby (Neogobius melanostomus). However, limited understanding exists as to how Round Goby has impacted small-bodied native benthic fishes after its secondary invasion into tributaries of the Laurentian Great Lakes. To investigate Round Goby impacts on darter species (family Percidae) in tributary ecosystems, catch per unit area (CPUA) of native and non-native fishes from two riverine ecosystems in Southwestern Ontario (Ausable River, Big Otter Creek) were analyzed. Spatial analyses indicated Round Goby CPUA was highest proximate to the Great Lakes, with a sharp decline in CPUA at sites upstream from each lake (Round Goby CPUA approached zero after 18 and 14 km in the Ausable River and Big Otter Creek, respectively). There was some evidence of a negative relationship between the CPUA of Round Goby and several darter species along the tributary gradients, with moderately negative co-occurrence between Round Goby and Rainbow Darter in the Ausable River and Johnny Darter and Percidae species overall in Big Otter Creek. However, overwhelming evidence of negative associations between Round Goby and all darter species was not found. The negative relationship between the CPUA of Round Goby and some darter species was observed over similar time periods since establishment but greater spatial scales than in previous studies, and therefore has important implications for understanding the ecological impacts of Round Goby in tributary ecosystems.

9.
Conserv Biol ; 36(1): e13762, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34057237

RESUMO

In some cases, wildlife management objectives directed at multiple species can conflict with one another, creating species trade-offs. For managers to effectively identify trade-offs and avoid their undesirable outcomes, they must understand the agents involved and their corresponding interactions. A literature review of interspecific trade-offs within freshwater and marine ecosystems was conducted to illustrate the scope of potential interspecific trade-offs that may occur. We identified common pitfalls that lead to failed recognition of interspecific trade-offs, including, single-species management and limited consideration of the spatial and temporal scale of ecosystems and their management regimes. We devised a classification framework of common interspecific trade-offs within aquatic systems. The classification can help managers determine whether the conflict is species based through direct relationships (i.e., predator-prey, competition, other antagonistic relationships) or indirect relationships involving intermediate species (i.e., conflict-generating species) or whether the conflict is driven by opposing management objectives for species that would otherwise not interact (i.e., nontarget management effects). Once the nature and scope of trade-offs are understood, existing decision-making tools, such as structured decision-making and real-options analysis, can be incorporated to improve the management of aquatic ecosystems. Article Impact Statement: A synthesis of interspecific trade-offs in aquatic ecosystems supports their identification and resolution.


Un Marco de Clasificación para Compensaciones Interespecíficas en Ecología Acuática Resumen En algunos casos, los objetivos del manejo de fauna dirigidos a muchas especies pueden entrar en conflicto entre sí creando compensaciones entre las especies. Para que los manejadores identifiquen efectivamente estas compensaciones y eviten sus resultados no deseados, deben entender a los agentes involucrados y sus interacciones correspondientes. Se realizó una revisión literaria de las compensaciones interespecíficas dentro de los ecosistemas marinos y de agua dulce para ilustrar el alcance de las compensaciones interespecíficas que pueden ocurrir. Identificamos dificultades comunes que llevan al reconocimiento fallido de las compensaciones interespecíficas, incluyendo el manejo de una sola especie y sus regímenes de manejo. Diseñamos un marco de clasificación de compensaciones interespecíficas comunes dentro de los ecosistemas acuáticos. La clasificación puede ayudar a los manejadores a determinar si el conflicto está basado en las especies por sus relaciones directas (es decir, depredador-presa, competencia, otras relaciones antagonistas) o por relaciones indirectas que involucran a otras especies (es decir, efectos del manejo de especies que no son el objetivo). Una vez que se entiende la naturaleza y el alcance de las compensaciones, las herramientas de toma de decisión existentes, como la toma estructurada de decisiones y el análisis de opciones reales, pueden incorporarse para mejorar el manejo de los ecosistemas acuáticos.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Hidrobiologia
10.
J Fish Biol ; 100(2): 416-424, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34786715

RESUMO

Reproductive phenology and the length of the growing season vary in response to interannual environmental variability, with implications for population dynamics of freshwater fishes. Understanding the reproductive phenology of imperilled species in relation to environmental conditions is needed to better evaluate potential responses to changing environmental conditions, estimate future population dynamics and develop comprehensive recovery strategies. We examined Silver Shiner, a species listed as "Threatened" under Canada's Species at Risk Act, during spring 2018 and 2019 to better understand the reproductive phenology of the species at the northern edge of its range in Canada. The initiation of Silver Shiner spawning occurred on the descending limb of the hydrograph and was completed before the onset of the extended period of low summer flow. In addition, both the initiation and cessation of spawning occurred in response to a cumulative growing degree day base 5 (GDD5 ) cue, with logistic regression models indicating a 50% probability the population initiated and ceased spawning when GDD5 reached 68°C•days and 368°C•days, respectively. Logistic regression incorporating GDD5 effectively predicted spawning initiation and cessation, providing useful models for examining the impacts of alterations to the thermal regime on reproductive phenology and improving the ability to evaluate changes in the larval growth period. Furthermore, the models can facilitate the development of real-time estimates of spawning activity, and therefore ensure that disturbance to the species is minimized during the sensitive reproductive period.


Assuntos
Sinais (Psicologia) , Cyprinidae , Animais , Reprodução , Estações do Ano
11.
Conserv Physiol ; 9(1): coab057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35928053

RESUMO

Anthropogenic stressors are predicted to increase water temperature, which can influence physiological, individual, and population processes in fishes. We assessed the critical thermal maximum (CTmax) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada. Field trials were conducted stream side June-November 2019 in the Grand River, Ontario, to encompass a range of ambient water temperatures (7-25°C) for which agitation temperature (Tag) and CTmax were determined. Additional measures were taken in the comparatively more turbid Thames River to test the effect of turbidity on both measures. In the Grand, Tag and CTmax ranged from 23°C to 33°C and 27°C to 37°C, respectively, and both significantly increased with ambient water temperature, with a high acclimation response ratio (0.49). The thermal safety margin (difference between ambient temperatures and CTmax) was smallest in July and August (~11°C) indicating that eastern sand darter lives closer to its physiological limit in summer. The between-river comparison indicated that turbidity had no significant influence on Tag and CTmax. Comparison of CTmax with in-river temperatures suggested that mean stream temperature 24 hours before the trial was most important for determining CTmax. Fish mass, temperature variance and maximum temperature in the 24-hour period prior to the CTmax trial were also shown to have some effect on determining CTmax. Overall, study results better define the sensitivity of eastern sand darter to temperature changes across the growing season and provide information to assess the availability of suitable thermal habitat for conservation purposes.

12.
Conserv Physiol ; 8(1): coaa081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904538

RESUMO

Organisms living in environments with oscillating temperatures may rely on plastic traits to sustain thermal tolerance during high temperature periods. Phenotypic plasticity in critical thermal maximum (CTmax) is a powerful thermoregulative strategy that enables organisms to adjust CTmax when ambient temperatures do not match thermal preference. Given that global temperatures are increasing at an unprecedented rate, identifying factors that affect the plastic response in CTmax can help predict how organisms are likely to respond to changes in their thermal landscape. Using an experimental thermal chamber in the field, we investigated the effect of short-term acclimation on the CTmax and thermal safety margin (TSM) of wild-caught redside dace, Clinostomus elongatus, (n = 197) in a northern population in Two Tree River, Ontario. Streamside CTmax trials were used to identify the maximum temperature at which redside dace maintain equilibrium, providing a powerful tool for understanding how thermal stress affects individual performance. CTmax and TSM of redside dace were sensitive to changes in temperature, regardless of season, suggesting that temperature pulses caused by climate change or urban activities can impose negative fitness consequences year round. Interestingly, an individual's recent thermal history was more influential to its thermal tolerance than the current ambient water temperature. While the CTmax of redside dace increased with body size, the effect of body size on TSM remains unclear based on our models. The results provide insight into the thermal performance of redside dace that, to date, has been difficult to assess due to the species' rarity and lack of suitable streamside protocols.

13.
Conserv Biol ; 33(6): 1392-1403, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30912201

RESUMO

Species reintroduction efforts can improve the recovery of imperiled species, but successful implementation of this conservation strategy requires a thorough understanding of the abiotic and biotic factors influencing species viability. Species interactions are especially understudied, in particular by omitting the effect of imperfect detection on negative, neutral, or positive associations within a community. Using repeat surveys from 5 southern Ontario, Canada, Great Lakes tributaries, we quantified species co-occurrence patterns with the eastern sand darter (ESD) (Ammocrypta pellucida), listed as federally threatened, and characterized how imperfect detection during sampling can influence inference regarding these relationships. We used a probabilistic framework that included 3 approaches of increasing complexity: probabilistic co-occurrence analysis ignoring imperfect detection; single-species occupancy models with subsequent co-occurrence analysis; and 2-species occupancy models. We then used our occupancy models to predict suitable sites for potential future reintroduction efforts while considering the influence of negative species interactions. Based on the observed data, ESD showed several positive associations with co-occurring species; however, species associations differed when imperfect detection was considered. Specifically, a negative association between ESD and rosyface shiner (Notropis rubellus) was observed only after accounting for imperfect detection in the Grand River. Alternatively, positive associations in the Grand River between ESD and northern hogsucker (Hypentelium nigricans) and silver shiner (Notropis photogenis) were observed regardless of whether imperfect detection was accounted for. Our models predicted several potential reintroduction sites for ESD in formerly occupied watersheds with high levels of certainty. Overall, our results demonstrate the importance of investigating imperfect detection and species co-occurrence when planning reintroduction efforts.


Caracterización de los Patrones de Coocurrencia de Especies de Peces de Arroyo Detectados Imperfectamente para Informar los Esfuerzos de Reintroducción Resumen Los esfuerzos de reintroducción pueden incrementar la recuperación de las especies en peligro, pero la implementación exitosa de esta estrategia de conservación requiere de un entendimiento profundo de los factores bióticos y abióticos que influyen sobre la viabilidad de las especies. Las interacciones entre las especies están especialmente sub-estudiadas, particularmente cuando se omite el efecto de la detección imperfecta sobre las asociaciones negativas, neutras o positivas dentro de una comunidad. Usamos censos repetidos tomados en cinco tributarios de los Grandes Lagos al sur de Ontario, Canadá, cuantificamos los patrones de coocurrencia de especies con el pez Ammocrypta pellucida (eastern sand darter, ESD, en inglés), enlistado como amenazado a nivel federal, y caracterizamos cómo la detección imperfecta durante un muestreo puede influir sobre la inferencia con respecto a estas relaciones. Utilizamos un marco de trabajo probabilístico que incluía tres estrategias con una complejidad cada vez mayor: análisis probabilístico de coocurrencia ignorando la detección imperfecta; modelos de ocupación de una sola especie con un análisis subsecuente de coocurrencia; y modelos de ocupación de dos especies. Después utilizamos nuestros modelos de ocupación para predecir los sitios apropiados para futuros esfuerzos potenciales mientras consideramos la influencia de las interacciones negativas entre especies. Con base en los datos observados, los ESD mostraron varias asociaciones positivas con especies coocurrentes; sin embargo, las asociaciones entre especies difirieron cuando se consideró la detección imperfecta. Específicamente, se observó una asociación negativa entre los ESD y Notropis rubellus sólo después de considerar la detección imperfecta en el río Grand. De manera alternativa, se observaron asociaciones positivas en el río Grand entre los ESD y Hypentelium nigricans y Notropis photogenis sin importar si se consideró o no la detección imperfecta. Nuestros modelos pronosticaron con altos niveles de certidumbre varios sitios potenciales de reintroducción para los ESD en cuencas previamente ocupadas. En general, nuestros resultados demuestran la importancia de investigar la detección imperfecta y la coocurrencia de especies cuando se planean esfuerzos de reintroducción.


Assuntos
Conservação dos Recursos Naturais , Rios , Animais , Lagos , Ontário , Alimentos Marinhos
14.
Ecol Evol ; 6(20): 7311-7322, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725399

RESUMO

Understanding the functional relationship between the sample size and the performance of species richness estimators is necessary to optimize limited sampling resources against estimation error. Nonparametric estimators such as Chao and Jackknife demonstrate strong performances, but consensus is lacking as to which estimator performs better under constrained sampling. We explore a method to improve the estimators under such scenario. The method we propose involves randomly splitting species-abundance data from a single sample into two equally sized samples, and using an appropriate incidence-based estimator to estimate richness. To test this method, we assume a lognormal species-abundance distribution (SAD) with varying coefficients of variation (CV), generate samples using MCMC simulations, and use the expected mean-squared error as the performance criterion of the estimators. We test this method for Chao, Jackknife, ICE, and ACE estimators. Between abundance-based estimators with the single sample, and incidence-based estimators with the split-in-two samples, Chao2 performed the best when CV < 0.65, and incidence-based Jackknife performed the best when CV > 0.65, given that the ratio of sample size to observed species richness is greater than a critical value given by a power function of CV with respect to abundance of the sampled population. The proposed method increases the performance of the estimators substantially and is more effective when more rare species are in an assemblage. We also show that the splitting method works qualitatively similarly well when the SADs are log series, geometric series, and negative binomial. We demonstrate an application of the proposed method by estimating richness of zooplankton communities in samples of ballast water. The proposed splitting method is an alternative to sampling a large number of individuals to increase the accuracy of richness estimations; therefore, it is appropriate for a wide range of resource-limited sampling scenarios in ecology.

15.
PLoS One ; 10(3): e0118267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763859

RESUMO

Understanding the implications of different management strategies is necessary to identify best conservation trajectories for ecosystems exposed to anthropogenic stressors. For example, science-based risk assessments at large scales are needed to understand efficacy of different vector management approaches aimed at preventing biological invasions associated with commercial shipping. We conducted a landscape-scale analysis to examine the relative invasion risk of ballast water discharges among different shipping pathways (e.g., Transoceanic, Coastal or Domestic), ecosystems (e.g., freshwater, brackish and marine), and timescales (annual and per discharge event) under current and future management regimes. The arrival and survival potential of nonindigenous species (NIS) was estimated based on directional shipping networks and their associated propagule pressure, environmental similarity between donor-recipient ecosystems (based on salinity and temperature), and effects of current and future management strategies (i.e., ballast water exchange and treatment to meet proposed international biological discharge standards). Our findings show that current requirements for ballast water exchange effectively reduce invasion risk to freshwater ecosystems but are less protective of marine ecosystems because of greater environmental mismatch between source (oceanic) and recipient (freshwater) ecoregions. Future requirements for ballast water treatment are expected to reduce risk of zooplankton NIS introductions across ecosystem types but are expected to be less effective in reducing risk of phytoplankton NIS. This large-scale risk assessment across heterogeneous ecosystems represents a major step towards understanding the likelihood of invasion in relation to shipping networks, the relative efficacy of different invasion management regimes and seizing opportunities to reduce the ecological and economic implications of biological invasions.


Assuntos
Água Doce , Plâncton , Água do Mar , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/normas , Animais , Canadá , Espécies Introduzidas , Fitoplâncton , Medição de Risco , Salinidade , Poluentes da Água , Purificação da Água
16.
Ecol Appl ; 24(4): 877-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988783

RESUMO

Long implicated in the invasion process, live-bait anglers are highly mobile species vectors with frequent overland transport of fishes. To test hypotheses about the role of anglers in propagule transport, we developed a social-ecological model quantifying the opportunity for species transport beyond the invaded range resulting from bycatch during commercial bait operations, incidental transport, and release to lake ecosystems by anglers. We combined a gravity model with a stochastic, agent-based simulation, representing a 1-yr iteration of live-bait angling and the dynamics of propagule transport at fine spatiotemporal scales (i.e., probability of introducing n propagules per lake per year). A baseline scenario involving round goby (Neogobius melanostomus) indicated that most angling trips were benign; irrespective of lake visitation, anglers failed to purchase and transport propagules (benign trips, median probability P = 0.99912). However, given the large number of probability trials (4.2 million live-bait angling events per year), even the rarest sequence of events (uptake, movement, and deposition of propagules) is anticipated to occur. Risky trips (modal P = 0.00088 trips per year; approximately 1 in 1136) were sufficient to introduce a substantial number of propagules (modal values, Poisson model = 3715 propagules among 1288 lakes per year; zero-inflated negative binomial model = 6722 propagules among 1292 lakes per year). Two patterns of lake-specific introduction risk emerged. Large lakes supporting substantial angling activity experienced propagule pressure likely to surpass demographic barriers to establishment (top 2.5% of lakes with modal outcomes of five to 76 propagules per year; 303 high-risk lakes with three or more propagules, per year). Small or remote lakes were less likely to receive propagules; however, most risk distributions were leptokurtic with a long right tail, indicating the rare occurrence of high propagule loads to most waterbodies. Infestation simulations indicated that the number of high-risk waterbodies could be as great as 1318 (zero-inflated negative binomial), whereas a 90% reduction in bycatch from baseline would reduce the modal number of high risk lakes to zero. Results indicate that the combination of invasive bycatch and live-bait anglers warrants management concern as a species vector, but that risk is confined to a subset of individuals and recipient sites that may be effectively managed with targeted strategies.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Pesqueiros , Peixes/classificação , Peixes/fisiologia , Lagos , Meios de Transporte , Animais , Simulação por Computador , Modelos Biológicos
17.
Ecol Appl ; 20(8): 2286-99, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21265458

RESUMO

Human-mediated dispersal among aquatic ecosystems often results in biotic transfer between drainage basins. Such activities may circumvent biogeographic factors, with considerable ecological, evolutionary, and economic implications. However, the efficacy of predictions concerning community changes following inter-basin movements are limited, often because the dispersal mechanism is poorly understood (e.g., quantified only partially). To date, spatial-interaction models that predict the movement of humans as vectors of biotic transfer have not incorporated patterns of human movement through transportation networks. As a necessary first step to determine the role of anglers as invasion vectors across a land-lake ecosystem, we investigate their movement potential within Ontario, Canada. To determine possible model improvements resulting from inclusion of network travel, spatial-interaction models were constructed using standard Euclidean (e.g., straight-line) distance measures and also with distances derived from least-cost routing of human transportation networks. Model comparisons determined that least-cost routing both provided the most parsimonious model and also excelled at forecasting spatial interactions, with a proportion of 0.477 total movement deviance explained. The distribution of movements was characterized by many relatively short to medium travel distances (median = 292.6 km) with fewer lengthier distances (75th percentile = 484.6 km, 95th percentile = 775.2 km); however, even the shortest movements were sufficient to overcome drainage-basin boundaries. Ranking of variables in order of their contribution within the most parsimonious model determined that distance traveled, origin outflow, lake attractiveness, and sportfish richness significantly influence movement patterns. Model improvements associated with least-cost routing of human transportation networks imply that patterns of human-mediated invasion are fundamentally linked to the spatial configuration and relative impedance of human transportation networks, placing increased importance on understanding their contribution to the invasion process.


Assuntos
Monitoramento Ambiental/métodos , Espécies Introduzidas , Meios de Transporte , Animais , Água Doce , Great Lakes Region , Atividades Humanas , Humanos , Modelos Biológicos , Ontário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...