Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(22): 32225-32245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644425

RESUMO

The ubiquitous proximity of the commonly used microplastic (MP) particles particularly polyethylene (PE), polypropylene (PP), and polystyrene (PS) poses a serious threat to the environment and human health globally. Biological treatment as an environment-friendly approach to counter MP pollution has recent interest when the bio-agent has beneficial functions in their ecosystem. This study aimed to utilize beneficial floc-forming bacteria Bacillus cereus SHBF2 isolated from an aquaculture farm in reducing the MP particles (PE, PP, and PS) from their environment. The bacteria were inoculated for 60 days in a medium containing MP particle as a sole carbon source. On different days of incubation (DOI), the bacterial growth analysis was monitored and the MP particles were harvested to examine their weight loss, surface changes, and alterations in chemical properties. After 60 DOI, the highest weight loss was recorded for PE, 6.87 ± 0.92%, which was further evaluated to daily reduction rate (k), 0.00118 day-1, and half-life (t1/2), 605.08 ± 138.52 days. The OD value (1.74 ± 0.008 Abs.) indicated the higher efficiency of bacteria for PP utilization, and so for the colony formation per define volume (1.04 × 1011 CFU/mL). Biofilm formation, erosions, cracks, and fragments were evident during the observation of the tested MPs using the scanning electron microscope (SEM). The formation of carbonyl and alcohol group due to the oxidation and hydrolysis by SHBF2 strain were confirmed using the Fourier transform infrared spectroscopic (FTIR) analysis. Additionally, the alterations of pH and CO2 evolution from each of the MP type ensures the bacterial activity and mineralization of the MP particles. The findings of this study have confirmed and indicated a higher degree of biodegradation for all of the selected MP particles. B. cereus SHBF2, the floc-forming bacteria used in aquaculture, has demonstrated a great potential for use as an efficient MP-degrading bacterium in the biofloc farming system in the near future to guarantee a sustainable green aquaculture production.


Assuntos
Bacillus cereus , Biodegradação Ambiental , Microplásticos , Polietileno , Polipropilenos , Poliestirenos , Bacillus cereus/metabolismo , Aquicultura , Poluentes Químicos da Água/metabolismo
2.
Environ Pollut ; 329: 121697, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088255

RESUMO

Microplastics (MPs) occurrence in farmed aquatic organisms has already been the prime priority of researchers due to the food security concerns for human consumption. A number of commercially important aquaculture systems have already been investigated for MPs pollution but the mud crab (Scylla sp.) aquaculture system has not been investigated yet even though it is a highly demanded commercial species globally. This study reported the MPs pollution in the mud crab (Scylla sp.) aquaculture system for the first time. Three different stations of the selected aquafarm were sampled for water and sediment samples and MPs particles in the samples were isolated by the gravimetric analysis (0.9% w/v NaCl solution). MP abundance was visualized under a microscope along with their size, shape, and color. A subset of the isolated MPs was analyzed by scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) for the surface and chemical characterization respectively. The average MPs concentration was 47.5 ± 11.875 particles/g in sediment and 127.92 ± 14.99 particles/100 L in the water sample. Fibrous-shaped (72.17%) and transparent-colored (59.37%) MPs were dominant in all the collected samples. However, smaller MPs (>0.05-0.5 mm) were more common in the water samples (47.69%) and the larger (>1-5 mm) MPs were in the sediment samples (47.83%). SEM analysis found cracks and roughness on the surface of the MPs and nylon, polyethylene, polypropylene, and polystyrene MPs were identified by FTIR analysis. PLI value showed hazard level I in water and level II in sediment. The existence of deleterious MPs particles in the mud crab aquaculture system was well evident. The other commercial mud crab aquafarms must therefore be thoroughly investigated in order to include farmed mud crabs as an environmentally vulnerable food security concern.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Água/análise , Aquicultura , Monitoramento Ambiental/métodos
4.
Vet World ; 10(1): 101-111, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28246454

RESUMO

AIM: The main objective of this study was to emphasize on histopathological examinations and molecular identification of Streptococcus agalactiae isolated from natural infections in hybrid tilapia (Oreochromis niloticus) in Temerloh Pahang, Malaysia, as well as to determine the susceptibility of the pathogen strains to various currently available antimicrobial agents. MATERIALS AND METHODS: The diseased fishes were observed for variable clinical signs including fin hemorrhages, alterations in behavior associated with erratic swimming, exophthalmia, and mortality. Tissue samples from the eyes, brain, kidney, liver, and spleen were taken for bacterial isolation. Identification of S. agalactiae was screened by biochemical methods and confirmed by VITEK 2 and 16S rRNA gene sequencing. The antibiogram profiling of the isolate was tested against 18 standard antibiotics included nitrofurantoin, flumequine, florfenicol, amoxylin, doxycycline, oleandomycin, tetracycline, ampicillin, lincomycin, colistin sulfate, oxolinic acid, novobiocin, spiramycin, erythromycin, fosfomycin, neomycin, gentamycin, and polymyxin B. The histopathological analysis of eyes, brain, liver, kidney, and spleen was observed for abnormalities related to S. agalactiae infection. RESULTS: The suspected colonies of S. agalactiae identified by biochemical methods was observed as Gram-positive chained cocci, ß-hemolytic, and non-motile. The isolate was confirmed as S. agalactiae by VITEK 2 (99% similarity), reconfirmed by 16S rRNA gene sequencing (99% similarity) and deposited in GenBank with accession no. KT869025. The isolate was observed to be resistance to neomycin and gentamicin. The most consistent gross findings were marked hemorrhages, erosions of caudal fin, and exophthalmos. Microscopic examination confirmed the presence of marked congestion and infiltration of inflammatory cell in the eye, brain, kidney, liver, and spleen. Eye samples showed damage of the lens capsule, hyperemic and hemorrhagic choroid tissue, and retina hyperplasia accompanied with edema. Brain samples showed perivascular and pericellular edema and hemorrhages of the meninges. Kidney samples showed hemorrhage and thrombosis in the glomeruli and tubules along with atrophy in hematopoietic tissue. Liver samples showed congestion of the sinusoids and blood vessel, thrombosis of portal blood vessel, and vacuolar (fatty) degeneration of hepatocytes. Spleen samples showed large thrombus in the splenic blood vessel, multifocal hemosiderin deposition, congestion of blood vessels, and multifocal infiltration of macrophages. CONCLUSION: Therefore, it can be concluded that pathological changes in tissues and organs of fish occur proportionally to the pathogen invasion, and because of their high resistance, neomycin and gentamicin utilization in the prophylaxis or treatment of S. agalactiae infection should be avoided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...