Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 135: 24-33, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27964835

RESUMO

Water deficiency has become a major issue for modern agriculture as its effects on crop yields and tuber quality have become more pronounced. Potato genotypes more tolerant to water shortages have been identified through assessment of yield and dry matter. In the present study, a combination of metabolite profiling and physiological/agronomical measurements has been used to explore complex system level responses to non-lethal water restriction. The metabolites identified were associated with physiological responses in three different plant tissues (leaf, root and tuber) of five different potato genotypes varying in susceptibility/tolerance to drought. This approach explored the potential of metabolite profiling as a tool to unravel sectors of metabolism that react to stress conditions and could mirror the changes in the plant physiology. The metabolite results showed different responses of the three plant tissues to the water deficit, resulting either in different levels of the metabolites detected or different metabolites expressed. The leaf material displayed the most changes to drought as reported in literature. The results highlighted genotype-specific signatures to water restriction over all three plant tissues suggesting that the genetics can predominate over the environmental conditions. This will have important implications for future breeding approaches.


Assuntos
Solanum tuberosum/química , Estresse Fisiológico , Água/metabolismo , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética
2.
Physiol Res ; 60(3): 573-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21401305

RESUMO

Interaural time differences (ITDs), the differences of arrival time of the sound at the two ears, provide a major cue for low-frequency sound localization in the horizontal plane. The first nucleus involved in the computation of ITDs is the medial superior olive (MSO). We have modeled the neural circuit of the MSO using a stochastic description of spike timing. The inputs to the circuit are stochastic spike trains with a spike timing distribution described by a given probability density function (beta density). The outputs of the circuit reproduce the empirical firing rates found in experiment in response to the varying ITD. The outputs of the computational model are calculated numerically and these numerical simulations are also supported by analytical calculations. We formulate a simple hypothesis concerning how sound localization works in mammals. According to this hypothesis, there is no array of delay lines as in the Jeffress' model, but the inhibitory input is shifted in time as a whole. This is consistent with experimental observations in mammals.


Assuntos
Modelos Teóricos , Localização de Som , Estimulação Acústica , Animais , Vias Auditivas/fisiologia , Humanos , Mamíferos , Neurônios/fisiologia , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...