Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430718

RESUMO

A Cyber-Physical System (CPS) is a network of cyber and physical elements that interact with each other. In recent years, there has been a drastic increase in the utilization of CPSs, which makes their security a challenging problem to address. Intrusion Detection Systems (IDSs) have been used for the detection of intrusions in networks. Recent advancements in the fields of Deep Learning (DL) and Artificial Intelligence (AI) have allowed the development of robust IDS models for the CPS environment. On the other hand, metaheuristic algorithms are used as feature selection models to mitigate the curse of dimensionality. In this background, the current study presents a Sine-Cosine-Adopted African Vultures Optimization with Ensemble Autoencoder-based Intrusion Detection (SCAVO-EAEID) technique to provide cybersecurity in CPS environments. The proposed SCAVO-EAEID algorithm focuses mainly on the identification of intrusions in the CPS platform via Feature Selection (FS) and DL modeling. At the primary level, the SCAVO-EAEID technique employs Z-score normalization as a preprocessing step. In addition, the SCAVO-based Feature Selection (SCAVO-FS) method is derived to elect the optimal feature subsets. An ensemble Deep-Learning-based Long Short-Term Memory-Auto Encoder (LSTM-AE) model is employed for the IDS. Finally, the Root Means Square Propagation (RMSProp) optimizer is used for hyperparameter tuning of the LSTM-AE technique. To demonstrate the remarkable performance of the proposed SCAVO-EAEID technique, the authors used benchmark datasets. The experimental outcomes confirmed the significant performance of the proposed SCAVO-EAEID technique over other approaches with a maximum accuracy of 99.20%.


Assuntos
Inteligência Artificial , Segurança Computacional , Algoritmos , Benchmarking , Meio Ambiente
2.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112414

RESUMO

An Internet of Things (IoT)-assisted Wireless Sensor Network (WSNs) is a system where WSN nodes and IoT devices together work to share, collect, and process data. This incorporation aims to enhance the effectiveness and efficiency of data analysis and collection, resulting in automation and improved decision-making. Security in WSN-assisted IoT can be referred to as the measures initiated for protecting WSN linked to the IoT. This article presents a Binary Chimp Optimization Algorithm with Machine Learning based Intrusion Detection (BCOA-MLID) technique for secure IoT-WSN. The presented BCOA-MLID technique intends to effectively discriminate different types of attacks to secure the IoT-WSN. In the presented BCOA-MLID technique, data normalization is initially carried out. The BCOA is designed for the optimal selection of features to improve intrusion detection efficacy. To detect intrusions in the IoT-WSN, the BCOA-MLID technique employs a class-specific cost regulation extreme learning machine classification model with a sine cosine algorithm as a parameter optimization approach. The experimental result of the BCOA-MLID technique is tested on the Kaggle intrusion dataset, and the results showcase the significant outcomes of the BCOA-MLID technique with a maximum accuracy of 99.36%, whereas the XGBoost and KNN-AOA models obtained a reduced accuracy of 96.83% and 97.20%, respectively.

3.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904839

RESUMO

Wireless sensor networks (WSNs) are becoming a significant technology for ubiquitous living and continue to be involved in active research because of their varied applications. Energy awareness will be a critical design problem in WSNs. Clustering is a widespread energy-efficient method and grants several benefits such as scalability, energy efficiency, less delay, and lifetime, but it results in hotspot issues. To solve this, unequal clustering (UC) has been presented. In UC, the size of the cluster differs with the distance to the base station (BS). This paper devises an improved tuna-swarm-algorithm-based unequal clustering for hotspot elimination (ITSA-UCHSE) technique in an energy-aware WSN. The ITSA-UCHSE technique intends to resolve the hotspot problem and uneven energy dissipation in the WSN. In this study, the ITSA is derived from the use of a tent chaotic map with the traditional TSA. In addition, the ITSA-UCHSE technique computes a fitness value based on energy and distance metrics. Moreover, the cluster size determination via the ITSA-UCHSE technique helps to address the hotspot issue. To demonstrate the enhanced performance of the ITSA-UCHSE approach, a series of simulation analyses were conducted. The simulation values stated that the ITSA-UCHSE algorithm has reached improved results over other models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...