Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 6913-6923, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593436

RESUMO

4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.


Assuntos
Fenóis , Humanos , Fenóis/química , Fenóis/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Disruptores Endócrinos/química , Simulação de Dinâmica Molecular
2.
Cells ; 11(19)2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230936

RESUMO

The pregnane X receptor (PXR, NR1I2) is a xenobiotic-activated transcription factor with high levels of expression in the liver. It not only plays a key role in drug metabolism and elimination, but also promotes tumor growth, drug resistance, and metabolic diseases. It has been proposed as a therapeutic target for type II diabetes, metabolic syndrome, and inflammatory bowel disease, and PXR antagonists have recently been considered as a therapy for colon cancer. There are currently no PXR antagonists that can be used in a clinical setting. Nevertheless, due to the large and complex ligand-binding pocket (LBP) of the PXR, it is challenging to discover PXR antagonists at the orthosteric site. Alternative ligand binding sites of the PXR have also been proposed and are currently being studied. Recently, the AF-2 allosteric binding site of the PXR has been identified, with several compounds modulating the site discovered. Herein, we aimed to summarize our current knowledge of allosteric modulation of the PXR as well as our attempt to unlock novel allosteric sites. We describe the novel binding function 3 (BF-3) site of PXR, which is also common for other nuclear receptors. In addition, we also mention a novel allosteric site III based on in silico prediction. The identified allosteric sites of the PXR provide new insights into the development of safe and efficient allosteric modulators of the PXR receptor. We therefore propose that novel PXR allosteric sites might be promising targets for treating chronic metabolic diseases and some cancers.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores de Esteroides , Sítio Alostérico , Furilfuramida , Humanos , Ligantes , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares , Receptores de Esteroides/metabolismo , Xenobióticos
3.
Front Pharmacol ; 12: 713149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483922

RESUMO

Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 µM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.

4.
Cells ; 9(12)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255185

RESUMO

The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this study, we sought to determine if diazepam is a ligand directly interacting with the CAR ligand binding domain (LBD) and if it regulates its target genes in a therapeutically relevant concentration. We used different CAR constructs in translocation and luciferase reporter assays, recombinant CAR-LBD in a TR-FRET assay, and target genes induction studied in primary human hepatocytes (PHHs), HepaRG cells, and in CAR humanized mice. We also used in silico docking and CAR-LBD mutants to characterize the interaction of diazepam and its metabolites with the CAR cavity. Diazepam and its metabolites such as nordazepam, temazepam, and oxazepam are activators of CAR+Ala in translocation and two-hybrid assays and fit the CAR cavity in docking experiments. In gene reporter assays with CAR3 and in the TR-FRET assay, only diazepam significantly interacts with CAR-LBD. Diazepam also promotes up-regulation of CYP2B6 in PHHs and in HepaRG cells. However, in humanized CAR mice, diazepam significantly induces neither CYP2B6 nor Cyp2b10 genes nor does it regulate critical genes involved in glucose and lipids metabolism and liver proliferation. Thus, we demonstrate that diazepam interacts with human CAR-LBD as a weak ligand, but it does not significantly affect expression of tested CAR target genes in CAR humanized mice.


Assuntos
Diazepam/farmacologia , Domínios Proteicos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Adulto , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Receptor Constitutivo de Androstano , Feminino , Genes Reporter/efeitos dos fármacos , Genes Reporter/genética , Hepatócitos/efeitos dos fármacos , Humanos , Ligantes , Fígado/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade
5.
J Steroid Biochem Mol Biol ; 202: 105702, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505574

RESUMO

Bile acids (BAs) are important signaling molecules acting via the farnesoid X nuclear receptor (FXR) and the membrane G protein-coupled bile acid receptor 1 (GPBAR1). Besides deconjugation of BAs, the oxidoreductive enzymes of colonic bacteria and hepatocytes enable the conversion of BAs into their epimers or dehydrogenated forms. Obeticholic acid (OCA) is the first-in-class BA-derived FXR agonist approved for the treatment of primary biliary cholangitis. Herein, a library of OCA derivatives, including 7-keto, 6-ethylidene derivatives and 3ß-epimers, was synthetized and investigated in terms of interactions with FXR and GPBAR1 in transaction assays and evaluated for FXR target genes expression in human hepatocytes and C57BL/6 mice. The derivatives were further subjected to cell-free analysis employing in silico molecular docking and a TR-FRET assay. The conversion of the 3ßhydroxy epimer and its pharmacokinetics in mice were studied using LC-MS. We found that only the 3ß-hydroxy epimer of OCA (3ß-isoOCA) possesses significant activity to FXR in hepatic cells and mice. However, in a cell-free assay, 3ß-isoOCA had about 9-times lower affinity to FXR than did OCA. We observed that 3ß-isoOCA readily epimerizes to OCA in hepatocytes and murine liver. This conversion was significantly inhibited by the hydroxy-Δ5-steroid dehydrogenase inhibitor trilostane. In addition, we found that 3,7-dehydroobeticholic acid is a potent GPBAR1 agonist. We conclude that 3ß-isoOCA significantly activates FXR due to its epimerization to the more active OCA by hepatic metabolism. Other modifications as well as epimerization on the C3/C7 positions and the introduction of 6-ethylidene in the CDCA scaffold abrogate FXR agonism and alleviate GPBAR1 activation.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Isomerismo , Masculino , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
Pharm Dev Technol ; 24(10): 1308-1316, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31509046

RESUMO

Although the systemic administration of terbinafine is quite well tolerated, topical treatment of the local infections is often preferred. New formulation strategies in topical antifungal therapy represent the polymeric nanoparticles (NPs). We successfully employed the originally synthesized PLGA derivatives of branched architectures of various molar masses, branching ratio, and high number of terminal hydroxyl or carboxyl groups for compounding of terbinafine loaded nanoparticles by nanoprecipitation method. Employing the polymers with tailored properties allowed us to formulate the NPs with desired particle size, loading capacity for drug, mucoadhesive properties, and drug release profile. The hydrophobicity and the polyester concentration revealed the main impact on the NPs size ranging from 100 to 600 nm. The stability of the nanosuspension is demonstrated by zeta potential >25 mV, and polydispersity index values <0.2. We used terbinafine in its less dissolved form of the base to increase the drug loading and delay the release. Cationic surfactant as stabilizer give the NPs high positive surface charge enhancing the adhesion to the mucosal surfaces. All formulations provided prolonged sustained release of terbinafine for several days. Antimicrobial potential has been proven by agar-well diffusion method.


Assuntos
Antifúngicos/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Terbinafina/química , Administração Tópica , Antifúngicos/administração & dosagem , Cátions , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Tensoativos/química , Terbinafina/administração & dosagem , Viscosidade
7.
Drug Dev Ind Pharm ; 42(10): 1653-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26925606

RESUMO

Commercially available antibacterial semisolid preparations intended for topical application provide only short-term drug release. A sustained kinetics is possible by exploitation of a biodegradable polymer carrier. The purpose of this work is to formulate a mucoadhesive system with aciclovir (ACV) based on a solid molecular dispersion of this drug in poly(lactic-co-glycolic acid) branched on tripenterythritol (PLGA/T). The ACV incorporation into PLGA/T was carried out either by solvent method, or melting method, or plasticization method using various plasticizers. The drug-polymer miscibility, plasticizer efficiency and content of residual solvent were found out employing DSC. Viscosity was measured at the shear rate range from 0.10 to 10.00 s(-1) at three temperatures and data were analyzed by Newtonian model. The mucoadhesive properties were ascertained in the tensile test on a mucin substrate. The amount of ACV released was carried out in a wash-off dissolution test. The DSC results indicate a transformation of crystalline form of ACV into an amorphous dissolved in branched polyester carrier, and absence of methyl formate residuals in formulation. All the tested plasticizers are efficient at Tg depression and viscosity decrease. The non-conventional ethyl pyruvate possessing supportive anti-inflammatory activity was evaluated as the most suitable plasticizer. The ACV release was strongly dependent on the ethyl pyruvate concentration and lasted from 1 to 10 days. The formulated PLGA/T system with ACV exhibits increased adhesion to mucosal hydrophilic surfaces and prolonged ACV release controllable by degradation process and viscosity parameters.


Assuntos
Aciclovir/administração & dosagem , Ácido Láctico/química , Plastificantes/administração & dosagem , Ácido Poliglicólico/química , Aciclovir/química , Materiais Biocompatíveis/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Plastificantes/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Fatores de Tempo
8.
Int J Pharm ; 458(2): 282-6, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24183958

RESUMO

Three oligoesters with different molar mass and degree of branching, intended as drug carriers, were synthesized and their thermal, rheological, adhesive, and drug release properties were studied. Triethyl citrate, ethyl pyruvate, ethyl salicylate, methyl salicylate, triacetin and tributyrin at a concentration of 20% were tested as plasticizers to improve drug incorporation, and application of the polymeric system. All of the tested plasticizers significantly depressed the Tg by at least 25.5°C. Plasticized oligoesters possessed remarkable adhesive properties on mucin in vitro, the adhesion is at least twofold bigger than it is for gels of cellulose derivatives. It was demonstrated that adhesivity increased with decreasing viscosity of oligoester matrices. In vitro dissolution tests of the flat matrices showed the prolongation of fluconazole release up to over 3 days for the oligoester carrier with the highest molar weight and degree of branching. Depending on the matrix hydrophilization, plasticizing led to an acceleration of the fluconazole release, the 3-h burst effect increased three times.


Assuntos
Adesivos/química , Portadores de Fármacos/química , Ésteres/química , Plastificantes/química , Fluconazol/química , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Polímeros/química , Reologia/métodos , Viscosidade
9.
Chemosphere ; 90(2): 789-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23089388

RESUMO

Humic substances play an important role in many environmental processes such as sequestration and transport of hydrophobic compounds. The supramolecular character of humic substances imparts high flexibility of the aggregates associated with their variable reactivity under different conditions. In this study, heat-induced transitions and character of the hydration shell of sodium salts of humic and fulvic acids originating from various sources were investigated using ultrasonic velocimetry in the temperature interval from 5 to 90 °C. Results clearly showed differences in stability and characteristics of the hydrated states at concentrations above and below 1 g L(-1) with the exception of Pahokee peat fulvic acids. It has been concluded that predominantly the relaxation part of the adiabatic compressibility plays an important role below 1 g L(-1) in contrast to both relaxation and intrinsic parts of the compressibility being important at higher concentrations. Dilution brought several temperature induced transitions which were investigated with respect to composition of all investigated humic substances. Correlation analysis revealed that the transition around 17 °C is associated with disruption of H-interactions whereas the transition around 42 °C depends on the aromaticity. Comparison of cooling and heating records revealed hysteresis in the structural relaxation resembling the behavior of physically stabilized hydrogels. Results indicated a difference in the conformation and therefore reactivity of dissolved humic substances in the dependence on temperature and thermal history. It has been hypothesized that this may play an important role in the transport and sequestration of hydrophobic pollutants by dissolved organic matter.


Assuntos
Benzopiranos/química , Temperatura Alta , Poluentes do Solo/química , Solo/química , Substâncias Húmicas/análise , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...