Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Metab ; 64: 101574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970449

RESUMO

OBJECTIVE: Maternal obesity increases the incidence of excess adiposity in newborns, resulting in lifelong diabetes risk. Elevated intrauterine fetal adiposity has been attributed to maternal hyperglycemia; however, this hypothesis does not account for the increased adiposity seen in newborns of mothers with obesity who have euglycemia. We aimed to explore the placental response to maternal hyperinsulinemia and the effect of insulin-like growth factor 2 (IGF-2) in promoting fetal adiposity by increasing storage and availability of nutrients to the fetus. METHODS: We used placental villous explants and isolated trophoblasts from normal weight and obese women to assess the effect of insulin and IGF-2 on triglyceride content and insulin receptor signaling. Stable isotope tracer methods were used ex vivo to determine effect of hormone treatment on de novo lipogenesis (DNL), fatty acid uptake, fatty acid oxidation, and esterification in the placenta. RESULTS: Here we show that placentae from euglycemic women with normal weight and obesity both have abundant insulin receptor. Placental depth and triglyceride were greater in women with obesity compared with normal weight women. In syncytialized placental trophoblasts and villous explants, insulin and IGF-2 activate insulin receptor, induce expression of lipogenic transcription factor SREBP-1 (sterol regulatory element-binding protein 1), and stimulate triglyceride accumulation. We demonstrate elevated triglyceride is attributable to increased esterification of fatty acids, without contribution from DNL and without an acceleration of fatty acid uptake. CONCLUSIONS: Our work reveals that obesity-driven aberrations in maternal metabolism, such as hyperinsulinemia, alter placental metabolism in euglycemic conditions, and may explain the higher prevalence of excess adiposity in the newborns of obese women.


Assuntos
Hiperinsulinismo , Obesidade Materna , Adiposidade , Ácidos Graxos/metabolismo , Feminino , Feto/metabolismo , Humanos , Hiperinsulinismo/metabolismo , Recém-Nascido , Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Obesidade/metabolismo , Placenta/metabolismo , Gravidez , Receptor de Insulina/metabolismo , Triglicerídeos/metabolismo
2.
Breast Cancer Res Treat ; 178(1): 75-86, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31372790

RESUMO

PURPOSE: Radiotherapy (RT) constitutes an important part of breast cancer treatment. However, triple negative breast cancers (TNBC) exhibit remarkable resistance to most therapies, including RT. Developing new ways to radiosensitize TNBC cells could result in improved patient outcomes. The M2 isoform of pyruvate kinase (PK-M2) is believed to be responsible for the re-wiring of cancer cell metabolism after oxidative stress. The aim of the study was to determine the effect of ionizing radiation (IR) on PK-M2-mediated metabolic changes in TNBC cells, and their survival. In addition, we determine the effect of PK-M2 activators on breast cancer stem cells, a radioresistant subpopulation of breast cancer stem cells. METHODS: Glucose uptake, lactate production, and glutamine consumption were assessed. The cellular localization of PK-M2 was evaluated by western blot and confocal microscopy. The small molecule activator of PK-M2, TEPP46, was used to promote its pyruvate kinase function. Finally, effects on cancer stem cell were evaluated via sphere forming capacity. RESULTS: Exposure of TNBC cells to IR increased their glucose uptake and lactate production. As expected, PK-M2 expression levels also increased, especially in the nucleus, although overall pyruvate kinase activity was decreased. PK-M2 nuclear localization was shown to be associated with breast cancer stem cells, and activation of PK-M2 by TEPP46 depleted this population. CONCLUSIONS: Radiotherapy can induce metabolic changes in TNBC cells, and these changes seem to be mediated, at least in part by PK-M2. Importantly, our results show that activators of PK-M2 can deplete breast cancer stem cells in vitro. This study supports the idea of combining PK-M2 activators with radiation to enhance the effect of radiotherapy in resistant cancers, such as TNBC.


Assuntos
Proteínas de Transporte/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/metabolismo , Radiação Ionizante , Neoplasias de Mama Triplo Negativas/radioterapia , Regulação para Cima , Proteínas de Ligação a Hormônio da Tireoide
3.
Breast Cancer Res Treat ; 146(3): 525-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25007966

RESUMO

In general, tumor cells display a more glycolytic phenotype compared to the corresponding normal tissue. However, it is becoming increasingly clear that tumors are composed of a heterogeneous population of cells. Breast cancers are organized in a hierarchical manner, with the breast cancer stem cells (BCSCs) at the top of the hierarchy. Here, we investigate the metabolic phenotype of BCSCs and their differentiated progeny. In addition, we determine the effect of radiation on the metabolic state of these two cell populations. Luminal, basal, and claudin-low breast cancer cell lines were propagated as mammospheres enriched in BCSCs. Lactate production, glucose consumption, and ATP content were compared with differentiated cultures. A metabolic flux analyzer was used to determine the oxygen consumption, extracellular acidification rates, maximal mitochondria capacity, and mitochondrial proton leak. The effect of radiation treatment of the metabolic phenotype of each cell population was also determined. BCSCs consume more glucose, produce less lactate, and have higher ATP content compared to their differentiated progeny. BCSCs have higher maximum mitochondrial capacity and mitochondrial proton leak compared to their differentiated progeny. Radiation treatment enhances the higher energetic state of the BCSCs, while decreasing mitochondrial proton leak. Our study indicated that breast cancer cells are heterogeneous in their metabolic phenotypes and BCSCs reside in a distinct metabolic state compared to their differentiated progeny. BCSCs display a reliance on oxidative phosphorylation, while the more differentiated progeny displays a more glycolytic phenotype. Radiation treatment affects the metabolic state of BCSCs. We conclude that interfering with the metabolic requirements of BCSCs may prevent radiation-induced reprogramming of breast cancer cells during radiation therapy, thus improving treatment outcome.


Assuntos
Neoplasias da Mama/metabolismo , Diferenciação Celular/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos da radiação , Feminino , Glicólise/genética , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos da radiação , Consumo de Oxigênio/efeitos da radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...