Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(13)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34929680

RESUMO

Manganese-doped ceria nanoparticles were prepared by hydrothermal synthesis and the prepared samples were thermally treated at 500 °C for 2 h. The samples were investigated using x-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), N2adsorption and x-ray photoelectron spectroscopy (XPS). XRD revealed that nanocrystalline ceria is the main phase in all samples, while a romanechite-like phase (Na2Mn5O10) appears in the sample doped with 30% of Mn. TEM coupled with EDS exposed the presence of the same phase in the sample doped with 20% Mn. While ceria particles have spherical morphology and particle size ranging from 4.3 to 9.2 nm, the rare crystals of the romanechite-like phase adopt a tubular morphology with a length of at least 1µm. However, the decrease in the ceria lattice constant and the EDS spectra of the ceria nanoparticles clearly indicate that a substantial amount of manganese entered the ceria crystal lattice. Manganese doping has a beneficial impact on the specific surface area of ceria. XPS measurements reveal a decrease in the Ce3+/Ce3+ + Ce4+content in the doped samples which is replaced by Mn3+. Moreover, a drastic increase in adsorbed oxygen is observed in the doped samples which is the consequence of the increase in Mn3+species that promotes oxygen migrations to the surface of the sample. Compared to the pure sample, the doped samples showed significantly higher catalytic activity for the process of toluene oxidation.

2.
Nanoscale ; 10(30): 14480-14491, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30022216

RESUMO

An understanding of the adaptation of the crystal structure of materials confined at the nanoscale, the influences of their specific structures on the evolution of their morphologies and, finally, their functional properties is essential not only for expanding fundamental knowledge, but also for facilitating the designs of novel nanostructures for diverse technological and medical applications. Here we describe how the distinct structure of barium-hexaferrite nanoplatelets evolves in a stepwise manner in parallel with the development of their size and morphology during hydrothermal synthesis. The nanoplatelets are formed by reactions between Ba- and Fe-hydroxides in an aqueous suspension at temperatures below 80 °C. Scanning-transmission electron microscopy showed that the structure of the as-synthesized, discoid nanoplatelets (∼2.3 nm thick, ∼10 nm wide) terminates at the basal surfaces with Ba-containing planes. However, after subsequent washing of the nanoplatelets with water the top two atomic layers dissolve from the surfaces. The final structure can be represented by a SRS* sequence of the barium-hexaferrite SRS*R* unit cell, where S and R represent a hexagonal (BaFe6O11)2- and a cubic (Fe6O8)2+ structural block, respectively. Due to the stable SRS* structure, the thickness of the primary nanoplatelets remains unchanged up to approximately 150 °C, when some of the primary nanoplatelets start to grow exaggeratedly and their thicknesses increase discretely with the addition of the RS segments to their structure. The SRS* structure of the primary nanoplatelets is too thin for the complete development of magnetic ordering. However, the addition of just one RS segment (SRS*R*S structure) gives the nanoplatelets hard magnetic properties.

3.
Nanoscale ; 9(44): 17551-17560, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29111545

RESUMO

Atomic-resolution scanning-transmission electron microscopy showed that barium hexaferrite (BHF) nanoplatelets display a distinct structure, which represents a novel structural variation of hexaferrites stabilized on the nanoscale. The structure can be presented in terms of two alternating structural blocks stacked across the nanoplatelet: a hexagonal (BaFe6O11)2- R block and a cubic (Fe6O8)2+ spinel S block. The structure of the BHF nanoplatelets comprises only two, or rarely three, R blocks and always terminates at the basal surfaces with the full S blocks. The structure of a vast majority of the nanoplatelets can be described with a SR*S*RS stacking order, corresponding to a BaFe15O23 composition. The nanoplatelets display a large, uniaxial magnetic anisotropy with the easy axis perpendicular to the platelet, which is a crucial property enabling different novel applications based on aligning the nanoplatelets with applied magnetic fields. However, the BHF nanoplatelets exhibit a modest saturation magnetization, MS, of just over 30 emu g-1. Given the cubic S block termination of the platelets, layers of maghemite, γ-Fe2O3, (M), with a cubic spinel structure, can be easily grown epitaxially on the surfaces of the platelets, forming a sandwiched M/BHF/M platelet structure. The exchange-coupled composite nanoplatelets exhibit a remarkably uniform structure, with an enhanced MS of more than 50 emu g-1 while essentially maintaining the out-of-plane easy axis. The enhanced MS could pave the way for their use in diverse platelet-based magnetic applications.

4.
Phys Chem Chem Phys ; 16(28): 14867-73, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24926853

RESUMO

Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.

5.
Nanotechnology ; 20(8): 085612, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19417460

RESUMO

We studied the structural properties of (Ge+SiO2)/SiO2 multilayer films, especially the influence of the deposition temperature and the parameters of subsequent annealing on the formation and spatial correlation of Ge quantum dots in an amorphous silica matrix. We showed that in-layer and inter-layer spatial correlations of the formed Ge quantum dots strongly depend on the deposition temperature. For suitable chosen deposition parameters, highly correlated dot positions in all three dimensions can be obtained. It is demonstrated that the degree of the spatial correlation of quantum dots influences the size distribution width, which further affects the macroscopic properties of the quantum dot arrays.


Assuntos
Cristalização/métodos , Germânio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Pontos Quânticos , Dióxido de Silício/química , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura
6.
Plant Sci ; 154(1): 23-29, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10725555

RESUMO

Chlorophyll (Chl) accumulation was monitored during black pine (Pinus nigra L.) seed germination for 14 days in the light and in the dark in the presence of gabaculine (GAB) and cytokinin in order to elucidate the regulation of gymnosperm seedling greening in the dark, primarily at the level of aminolevulinic acid formation. In the light, GAB inhibited chlorophyll accumulation in a manner dependent on concentration and developmental stage, and in the dark it showed no effect. Cytokinin, 10(-5) M benzyl adenine (BA) partly overcame GAB-induced inhibition in the light, mainly during earlier developmental stages. In the seedlings grown in the dark, an equal quantity of Chl accumulated in the presence of cytokinin with and without GAB and it was approximately 20-40% higher than in the control seedlings or in the seedlings grown only in the presence of GAB. 5-Amino-levulinic acid (ALA) synthesis was equal in the light and in the dark in seedlings of the same age and seedlings treated with GAB grown in the dark. In the light, GAB inhibited ALA synthetic activity. The results indicate that ALA synthesis is not a rate-limiting step within Chl biosynthesis in pine seedlings grown in the dark.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...