Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675518

RESUMO

The structural features and optical properties of supramolecular cyanoiron salts containing bis-pyridinium-4-oxime Toxogonin® (TOXO) as an electron acceptor are presented. The properties of the new TOXO-based cyanoiron materials were probed by employing two cyanoiron platforms: hexacyanoferrate(II), [Fe(CN)6]4- (HCF); and nitroprusside, [Fe(CN)5(NO)]2- (NP). Two water-insoluble inter-ionic donor-acceptor phases were characterized: the as-prepared microcrystalline reddish-brown (TOXO)2[Fe(CN)6]·8H2O (1a) with a medium-responsive, hydrochromic character; and the dark violet crystalline (TOXO)2[Fe(CN)6]·3.5H2O (1cr). Complex 1a, upon external stimulation, transforms to the violet anhydrous phase (TOXO)2[Fe(CN)6] (1b), which upon water uptake transforms back to 1a. Using the NP platform resulted in the water-insoluble crystalline salt TOXO[Fe(CN)5(NO)]·2H2O (2). The structures of 1cr and 2, solved by single-crystal X-ray diffraction, along with a comparative spectroscopic (UV-vis-NIR diffuse reflectance, IR, solid-state MAS-NMR, Mössbauer), thermal, powder X-ray diffraction, and microscopic analysis (SEM, TEM) of the isolated materials, provided insight for the supramolecular binding, electron-accepting, and H-bonding capabilities of TOXO in the self-assembly of these functionalized materials.

2.
ACS Nano ; 18(16): 10850-10862, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591990

RESUMO

Lithium lanthanum titanate (LLTO) perovskite is one of the most promising electrolytes for all-solid-state batteries, but its performance is limited by the presence of grain boundaries (GBs). The fraction of GBs can be significantly reduced by the preparation of coarse-grained LLTO ceramics. In this work, we describe an alternative approach to the fabrication of ceramics with large LLTO grains based on self-seeded grain growth. In compositions with the starting stoichiometry for the Li0.20La0.60TiO3 phase and with a high excess addition of Li (Li:La:Ti = 11:15:25), microstructure development starts with the formation of the layered RP-type Li2La2Ti3O10 phase. Grains with many RP-type defects initially develop into large platelets with thicknesses of up to 10 µm and lengths over 100 µm. Microstructure development continues with the crystallization of LLTO perovskite, epitaxially on the platelets and as smaller grains with thinner in-grain RP-lamellae. Theoretical calculations confirmed that the formation of RP-type sequences is energetically favored and precedes the formation of the LLTO perovskite phase. At around 1250 °C, the RP-type sequences become thermally unstable and gradually recrystallize to LLTO via the ionic exchange between the Li-rich RP-layers and the neighboring Ti and La layers as shown by quantitative HAADF-STEM. At higher sintering temperatures, LLTO grains become free of RP-type defects and the small grains recrystallize onto the large platelike seed grains via Ostwald ripening. The final microstructure is coarse-grained LLTO with total ionic conductivity in the range of 1 × 10-4 S/cm.

3.
Adv Mater ; 36(4): e2308027, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935053

RESUMO

Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral-water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2 , grown hydrothermally on twinned rutile seeds under acidic conditions, is studied in terms of interface translation, atomic structure, and surface chemistry in the presence of water, by means of advanced microscopy and spectroscopy methods combined with structure modeling and density functional theory calculations. It is shown that fibers while staying in stable separation during their growth, adopt a special crystallographic registry that is controlled by repulsion forces between fully hydroxylated and protonated (110) surfaces. During relaxation, a turbulent proton transfer and cracking of O─H bonds is observed, generating a strong acidic character via proton jump from bridge ─OHb to terminal ─OHt groups, and spontaneous dissociation of interfacial water via a transient protonation of the ─OHt groups. It is shown, that this specific interface structure can be implemented to induce acidic response in an initially neutral medium when re-immersed. This is thought to be the first demonstration of quantum-confined mineral-water interface, capable of memorizing its past and conveying its structurally encoded properties into a new environment.

4.
Materials (Basel) ; 16(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38138717

RESUMO

In the search for electronic phenomena in high-entropy alloys (HEAs) that go beyond the independent-electron description, we have synthesized a series of hexagonal rare earth (RE)-based HEAs: CexLaLuScY (x = 0.05-1.0). The measurements of electrical resistivity, magnetic susceptibility and specific heat have shown that the CexLaLuScY HEAs exhibit the Kondo effect, which is of a single impurity type in the entire range of employed Ce concentrations despite the alloys being classified as dense (concentrated) Kondo systems. A comparison to other known dense Kondo systems has revealed that the Kondo effect in the CexLaLuScY HEAs behaves quite differently from the chemically ordered Kondo lattices but quite similar to the RE-containing magnetic metallic glasses and randomly chemically disordered Kondo lattices of the chemical formula RE1xRE21-xM (with RE1 being magnetic and RE2 being nonmagnetic). The main reason for the similarity between HEAs and the metallic glasses and chemically disordered Kondo lattices appears to be the absence of a periodic 4f sublattice in these systems, which prevents the formation of a coherent state between the 4f-scattering sites in the T→ 0 limit. The crystal-glass duality of HEAs does not bring conceptually new features to the Kondo effect that would not be already present in other disordered dense Kondo systems. This study broadens the classification of HEAs to correlated electron systems.

5.
Nanomaterials (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686989

RESUMO

In this study, we present a new approach for the synthesis of Pt/SnO2 catalysts using microwave radiation. Pt(IV) and Sn(IV) inorganic precursors (H2PtCl6 and SnCl4) and ammonia were used, which allowed the controlled formation of platinum particles on the anisotropic SnO2 support. The synthesized Pt/SnO2 samples are mesoporous and exhibit a reversible physisorption isotherm of type IV. The XRD patterns confirmed the presence of platinum maxima in all Pt/SnO2 samples. The Williamson-Hall diagram showed SnO2 anisotropy with crystallite sizes of ~10 nm along the c-axis (< 00l >) and ~5 nm along the a-axis (< h00 >). SEM analysis revealed anisotropic, urchin-like SnO2 particles. XPS results indicated relatively low average oxidation states of platinum, close to Pt metal. 119Sn Mössbauer spectroscopy indicated electronic interactions between Pt and SnO2 particles. The synthesized samples were used for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of excess NaBH4. The catalytic activity of the Pt/SnO2 samples for the reduction of 4-NP to 4-AP was optimized by varying the synthesis parameters and Pt loading. The optimal platinum loading for the reduction of 4-NP to 4-AP on the anisotropic SnO2 support is 5 mol% with an apparent rate constant k = 0.59 × 10-2 s-1. The Pt/SnO2 sample showed exceptional reusability and retained an efficiency of 81.4% after ten cycles.

6.
ACS Appl Nano Mater ; 6(14): 12711-12725, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37533543

RESUMO

TiO2 nanotubes constitute very promising nanomaterials for water decontamination by the removal of cations. We combined a range of experimental techniques from structural analyses to measurements of the properties of aqueous suspensions of nanotubes, with (i) continuous solvent modeling and (ii) quantum DFT-based simulations to assess the adsorption of Cs+ on TiO2 nanotubes and to predict the separation of metal ions. The methodology is set to be operable under realistic conditions, which, in this case, include the presence of CO2 that needs to be treated as a substantial contaminant, both in experiments and in models. The mesoscopic model, based on the Poisson-Boltzmann equation and surface adsorption equilibrium, predicts that H+ ions are the charge-determining species, while Cs+ ions are in the diffuse layer of the outer surface with a significant contribution only at high concentrations and high pH. The effect of the size of nanotubes in terms of the polydispersity and the distribution of the inner and outer radii is shown to be a third-order effect that is very small when the nanotube layer is not very thick (ranging from 1 to 2 nm). Besides, DFT-based molecular dynamics simulations demonstrate that, for protonation, the one-site and successive association assumption is correct, while, for Cs+ adsorption, the size of the cation is important and the adsorption sites should be carefully defined.

7.
ACS Appl Nano Mater ; 6(12): 10421-10430, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37384128

RESUMO

Aiming at speeding up the discovery and understanding of promising electrocatalysts, a novel experimental platform, i.e., the Nano Lab, is introduced. It is based on state-of-the-art physicochemical characterization and atomic-scale tracking of individual synthesis steps as well as subsequent electrochemical treatments targeting nanostructured composites. This is provided by having the entire experimental setup on a transmission electron microscopy (TEM) grid. Herein, the oxygen evolution reaction nanocomposite electrocatalyst, i.e., iridium nanoparticles dispersed on a high-surface-area TiOxNy support prepared on the Ti TEM grid, is investigated. By combining electrochemical concepts such as anodic oxidation of TEM grids, floating electrode-based electrochemical characterization, and identical location TEM analysis, relevant information from the entire composite's cycle, i.e., from the initial synthesis step to electrochemical operation, can be studied. We reveal that Ir nanoparticles as well as the TiOxNy support undergo dynamic changes during all steps. The most interesting findings made possible by the Nano Lab concept are the formation of Ir single atoms and only a small decrease in the N/O ratio of the TiOxNy-Ir catalyst during the electrochemical treatment. In this way, we show that the precise influence of the nanoscale structure, composition, morphology, and electrocatalyst's locally resolved surface sites can be deciphered on the atomic level. Furthermore, the Nano Lab's experimental setup is compatible with ex situ characterization and other analytical methods, such as Raman spectroscopy, X-ray photoelectron spectroscopy, and identical location scanning electron microscopy, hence providing a comprehensive understanding of structural changes and their effects. Overall, an experimental toolbox for the systematic development of supported electrocatalysts is now at hand.

8.
iScience ; 26(6): 106894, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37260742

RESUMO

We have investigated magnetism of the Al28Co20Cr11Fe15Ni26 single-crystalline high-entropy alloy. The material is nanostructured, composed of a B2 matrix with dispersed spherical-like A2 nanoparticles of average diameter 64 nm. The magnetism was studied from 2 to 400 K via direct-current magnetization, hysteresis curves, alternating-current magnetic susceptibility, and thermoremanent magnetization time decay, to determine the magnetic state that develops in this highly structurally and chemically inhomogeneous material. The results reveal that the Cr-free B2 matrix of composition Al28Co25Fe15Ni32 forms a disordered ferromagnetic (FM) state that undergoes an FM transition at TC≈ 390 K. The Al- and Ni-free A2 nanoparticles of average composition Co19Cr56Fe25 adopt a core-shell structure, where the shells of about 2 nm thickness are CoFe enriched. While the shells are FM, the nanoparticle cores are asperomagnetic, classifying into the broad class of spin glasses. Asperomagnetism develops below 15 K and exhibits broken-ergodicity phenomena, typical of magnetically frustrated systems.

9.
ACS Appl Mater Interfaces ; 15(23): 28747-28762, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37264972

RESUMO

A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280-450 °C). By rational design of a bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200-380 °C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal-support bonding and the optimal abundance between Cu-O-Al and Fe-O-Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005). The change in the metal oxide-cluster alumina interface is related to the nature of the surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir-Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures.

10.
Chem Mater ; 35(6): 2612-2623, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008408

RESUMO

A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiO x N y -Ir catalyst was prepared from sputtered Ti-Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti-Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2-Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiO x N y -Ir interface as a result of the anodic oxidation mechanism. The developed TiO x N y -Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g-1 Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions.

11.
Nano Lett ; 23(2): 750-756, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36458590

RESUMO

The atomic-level response of zigzag ferroelectric domain walls (DWs) was investigated with in situ bias scanning transmission electron microscopy (STEM) in a subcoercive-field regime. Atomic-level movement of a single DW was observed. Unexpectedly, the change in the position of the DW, determined from the atomic displacement, did not follow the position of the strain field when the electric field was applied. This can be explained as low mobility defect segregation at the initial DW position, such as ordered clusters of oxygen vacancies. Further, the triangular apex of the zigzag wall is pinned, but it changes its shape and becomes asymmetric under electrical stimuli. This phenomenon is accompanied by strain and bound charge redistribution. We report on unique atomic-scale phenomena at the DW level and show that in situ STEM studies with atomic resolution are very relevant as they complement, and sometimes challenge, the knowledge gained from lower resolution studies.

12.
Front Chem ; 10: 1039716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531329

RESUMO

Disposal of copper, manganese and iron is particularly problematic in wastewater of metallurgical and galvanization plants, the electronics industry and agriculture. On the other hand, volatile organic compounds (VOCs), emitted from industrial processes, transportation and consumer products are the main class of air pollutants. The study revealed the potential of waste metal-loaded zeolite, generated through wastewater treatment procedures, to be utilised as an effective VOC removal catalyst for air treatment. In the first step, we have evaluated the sorption performance of natural zeolite clinoptilolite (HEU type), and synthetic zeolite 4A (LTA type) for the simultaneous removal of Cu2+, Mn2+ and Fe3+ species from aqueous solution. By a detailed sorption study, we determined the optimum sorption conditions and maximum metal concentrations in wastewater that can be after treatment disposed of in rivers or municipal plants. The efficiency of both zeolites for metal immobilization was demonstrated for concentrations up to 5 mg metals/1 g zeolite. These waste Cu-, Mn- and Fe-loaded zeolites were thermally treated at 540 °C before the second step, where we evaluated their catalytic performance in removing VOC. The thermally treated waste Cu-, Mn- and Fe-loaded natural zeolite clinoptilolite showed good catalytic performance in total toluene oxidation as a model VOC (conversion rate up to 96% at 510°C) and cycling stability (less than 15% drop in conversion rate in 4 h). In contrast, this is not the case for thermally treated waste Cu-, Mn- and Fe-loaded synthetic zeolite 4A.

13.
ACS Catal ; 12(24): 15135-15145, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36570081

RESUMO

Decreasing iridium loading in the electrocatalyst presents a crucial challenge in the implementation of proton exchange membrane (PEM) electrolyzers. In this respect, fine dispersion of Ir on electrically conductive ceramic supports is a promising strategy. However, the supporting material needs to meet the demanding requirements such as structural stability and electrical conductivity under harsh oxygen evolution reaction (OER) conditions. Herein, nanotubular titanium oxynitride (TiON) is studied as a support for iridium nanoparticles. Atomically resolved structural and compositional transformations of TiON during OER were followed using a task-specific advanced characterization platform. This combined the electrochemical treatment under floating electrode configuration and identical location transmission electron microscopy (IL-TEM) analysis of an in-house-prepared Ir-TiON TEM grid. Exhaustive characterization, supported by density functional theory (DFT) calculations, demonstrates and confirms that both the Ir nanoparticles and single atoms induce a stabilizing effect on the ceramic support via marked suppression of the oxidation tendency of TiON under OER conditions.

14.
Nanoscale Adv ; 4(10): 2321-2331, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133702

RESUMO

Catalyst design is crucial for improving catalytic activity and product selectivity. In a bifunctional Ni/ZSM-5 zeolite type catalyst, catalytic properties are usually tuned via varying Al and Ni contents. While changes in acid properties associated with Al sites are usually closely investigated, Ni phases, however, receive inadequate attention. Herein, we present a systematic structural study of Ni in the Ni/ZSM-5 materials by using Ni K-edge XANES and EXAFS analyses, complemented by XRD and TEM, to resolve the changes in the local environment of Ni species induced by the different Al contents of the parent ZSM-5 prepared by a "green", template free technique. Ni species in Ni/ZSM-5 exist as NiO crystals (3-50 nm) and as charge compensating Ni2+ cations. The Ni K-edge XANES and EXAFS results enabled the quantification of Ni-containing species. At a low Al to Si ratio (n Al/n Si ≤ 0.04), the NiO nanoparticles predominate in the samples and account for over 65% of Ni phases. However, NiO is outnumbered by Ni2+ cations attached to the zeolite framework in ZSM-5 with a high Al to Si ratio (n Al/n Si = 0.05) due to a higher number of framework negative charges imparted by Al. The obtained results show that the number of highly reducible and active NiO crystals is strongly correlated with the framework Al sites present in ZSM-5 zeolites, which depend greatly on the synthesis conditions. Therefore, this kind of study is beneficial for any further investigation of the catalytic activities of Ni/ZSM-5 and other metal-modified bifunctional catalysts.

15.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 4): 695-709, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975835

RESUMO

Contact and multiple cyclic twins of cassiterite commonly form in SnO2-based ceramics when SnO2 is sintered with small additions of cobalt and niobium oxides (dual doping). In this work, it is shown that the formation of twins is a two-stage process that starts with epitaxial growth of SnO2 on CoNb2O6 and Co4Nb2O9 seeds (twin nucleation stage) and continues with the fast growth of (101) twin contacts (twin growth stage). Both secondary phases form below the temperature of enhanced densification and SnO2 grain growth; CoNb2O6 forms at ∼700°C and Co4Nb2O9 at ∼900°C. They are structurally related to the rutile-type cassiterite and can thus trigger oriented (epitaxial) growth (local recrystallization) of SnO2 domains in different orientations on a single seed particle. While oriented growth of cassiterite on columbite-type CoNb2O6 grains can only result in the formation of contact twins, the Co4Nb2O9 grains with a structure comparable with that of corundum represent suitable sites for the nucleation of contact and multiple cyclic twins with coplanar or alternating morphology. The twin nucleation stage is followed by fast densification accompanied by significant SnO2 grain growth above 1300°C. The twin nuclei coarsen to large twinned grains as a result of the preferential and fast growth of the low-energy (101) twin contacts. The solid-state diffusion processes during densification and SnO2 grain growth are controlled by the formation of point defects and result in the dissolution of the twin nuclei and the incorporation of Nb5+ and Co2+ ions into the SnO2 matrix in the form of a solid solution. In this process, the twin nuclei are erased and their role in the formation of twins is shown only by irregular segregation of Co and Nb to the twin boundaries and inside the cassiterite grains, and Co,Nb-enrichment in the cyclic twin cores.

16.
Nanomaterials (Basel) ; 12(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808013

RESUMO

Titanium oxynitride carbon composite nanofibers (TiON/C-CNFs) were synthesised with electrospinning and subsequent heat treatment in ammonia gas. In situ four-probe electrical conductivity measurements of individual TiON/C-CNFs were performed. Additionally, the TiON/C-CNFs were thoroughly analysed with various techniques, such as X-ray and electron diffractions, electron microscopies and spectroscopies, thermogravimetric analysis and chemical analysis to determine the crystal structure, morphology, chemical composition, and N/O at. ratio. It was found that nanofibers were composed of 2-5 nm sized titanium oxynitride (TiON) nanoparticles embedded in an amorphous carbon matrix with a small degree of porosity. The average electrical conductivity of a single TiON/C-CNF was 1.2 kS/m and the bulk electrical conductivity of the TiON/C-CNF fabric was 0.053 kS/m. From the available data, the mesh density of the TiON/C-CNF fabric was estimated to have a characteristic length of 1.0 µm and electrical conductivity of a single TiON/C-CNF was estimated to be from 0.45 kS/m to 19 kS/m. The electrical conductivity of the measured TiON/C-CNFs is better than that of amorphous carbon nanofibers and has ohmic behaviour, which indicates that it can effectively serve as a new type of support material for electrocatalysts, batteries, sensors or supercapacitors.

17.
Nano Lett ; 22(12): 4814-4821, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35688423

RESUMO

Current trends in data processing have given impetus for an intense search of new concepts of memory devices with emphasis on efficiency, speed, and scalability. A promising new approach to memory storage is based on resistance switching between charge-ordered domain states in the layered dichalcogenide 1T-TaS2. Here we investigate the energy efficiency scaling of such charge configuration memory (CCM) devices as a function of device size and data write time τW as well as other parameters that have bearing on efficient device operation. We find that switching energy efficiency scales approximately linearly with both quantities over multiple decades, departing from linearity only when τW approaches the ∼0.5 ps intrinsic switching limit. Compared to current state of the art memory devices, CCM devices are found to be much faster and significantly more energy efficient, demonstrated here with two-terminal switching using 2.2 fJ, 16 ps electrical pulses.

18.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407904

RESUMO

Spontaneous metallic Pb whisker formation from Pb and Bi containing Al-alloy's surfaces is a newly discovered phenomenon. The whiskers display unique formations, growth and morphology, which give the opportunity to be applied for specialized sensor and electronics applications. Within this work, the impact of environmental conditions (gas composition and moisture) is investigated and correlated with the modification of whisker evolution and growth dynamics. Furthermore, the residual stress state of the aluminum matrix using deep cryogenic treatment is modified and used to further increase whisker nucleation and growth by up to three- and seven-fold, respectively, supported by quantitative results. The results of this paper indicate the possibility to manipulate the whisker not only in terms of their kinetics but also their morphology (optimal conditions are 20% O2 and 35% humidity). Such features allow the tailoring of the whisker structure and surface to volume ratio, which can be optimized for different applications. Finally, this research provides new insight into the growth dynamics of the whiskers through in situ and ex situ measurements, providing further evidence of the complex nucleation and growth mechanisms that dictate the spontaneous growth of Pb whiskers from Al-alloy 6026 surfaces with growth velocities up to 1.15 µm/s.

19.
Adv Sci (Weinh) ; 9(16): e2105114, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35384406

RESUMO

The formation and the evolution of electronic metallic states localized at the surface, commonly termed 2D electron gas (2DEG), represents a peculiar phenomenon occurring at the surface and interface of many transition metal oxides (TMO). Among TMO, titanium dioxide (TiO2 ), particularly in its anatase polymorph, stands as a prototypical system for the development of novel applications related to renewable energy, devices and sensors, where understanding the carrier dynamics is of utmost importance. In this study, angle-resolved photo-electron spectroscopy (ARPES) and X-ray absorption spectroscopy (XAS) are used, supported by density functional theory (DFT), to follow the formation and the evolution of the 2DEG in TiO2 thin films. Unlike other TMO systems, it is revealed that, once the anatase fingerprint is present, the 2DEG in TiO2 is robust and stable down to a single-unit-cell, and that the electron filling of the 2DEG increases with thickness and eventually saturates. These results prove that no critical thickness triggers the occurrence of the 2DEG in anatase TiO2 and give insight in formation mechanism of electronic states at the surface of TMO.

20.
Small ; 18(14): e2105694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35253364

RESUMO

The transition toward renewable energy sources requires low-cost, efficient, and durable electrocatalysts for green H2 production. Herein, an easy and highly scalable method to prepare MoS2 nanoparticles embedded in 3D partially reduced (pr) graphene oxide (GO) aerogel microspheres (MoS2 /prGOAMs) with controlled morphology and composition is described. Given their peculiar center-diverging mesoporous structure, which allows easy access to the active sites and optimal mass transport, and their efficient electron transfer facilitated by the intimate contact between the MoS2 and the 3D connected highly conductive pr-GO sheets, these materials exhibit a remarkable electrocatalytic activity in the hydrogen evolution reaction (HER). Ni atoms, either as single Ni atoms or NiO aggregates are then introduced in the MoS2 /prGOAMs hybrids, to facilitate water dissociation, which is the slowest step in alkaline HER, producing a bifunctional catalyst. After optimization, Ni-promoted MoS2 /prGOAMs obtained at 500 °C reach a remarkable η10 (overpotential at 10 mA cm-2 ) of 160 mV in 1 m KOH and 174 mV in 0.5 m H2 SO4 . Moreover, after chronopotentiometry tests (15 h) at a current density of 10 mA cm-2 , the η10 value improves to 147 mV in alkaline conditions, indicating an exceptional stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...