Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486457

RESUMO

Fan-out wafer-level packaging (FOWLP) is an interesting platform for Microelectromechanical systems (MEMS) sensor packaging. Employing FOWLP for MEMS sensor packaging has some unique challenges, while some originate merely from the fabrication of redistribution layers (RDL). For instance, it is crucial to protect the delicate structures and fragile membranes during RDL formation. Thus, additive manufacturing (AM) for RDL formation seems to be an auspicious approach, as those challenges are conquered by principle. In this study, by exploiting the benefits of AM, RDLs for fan-out packaging of capacitive micromachined ultrasound transducers (CMUT) were realized via drop-on-demand inkjet printing technology. The long-term reliability of the printed tracks was assessed via temperature cycling tests. The effects of multilayering and implementation of an insulating ramp on the reliability of the conductive tracks were identified. Packaging-induced stresses on CMUT dies were further investigated via laser-Doppler velocimetry (LDV) measurements and the corresponding resonance frequency shift. Conclusively, the bottlenecks of the inkjet-printed RDLs for FOWLP were discussed in detail.

2.
Micromachines (Basel) ; 10(5)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126083

RESUMO

Fan-out wafer level packaging (FOWLP) is one of the latest packaging trends in microelectronics. Besides technology developments towards heterogeneous integration, including multiple die packaging, passive component integration in packages and redistribution layers or package-on-package approaches, larger substrate formats are also targeted. Manufacturing is currently done on a wafer level of up to 12"/300 mm and 330 mm respectively. For a higher productivity and, consequently, lower costs, larger form factors are introduced. Instead of following the wafer level roadmaps to 450 mm, panel level packaging (PLP) might be the next big step. Both technology approaches offer a lot of opportunities as high miniaturization and are well suited for heterogeneous integration. Hence, FOWLP and PLP are well suited for the packaging of a highly miniaturized energy harvester system consisting of a piezo-based harvester, a power management unit and a supercapacitor for energy storage. In this study, the FOWLP and PLP approaches have been chosen for an application-specific integrated circuit (ASIC) package development with integrated SMD (surface mount device) capacitors. The process developments and the successful overall proof of concept for the packaging approach have been done on a 200 mm wafer size. In a second step, the technology was scaled up to a 457 × 305 mm2 panel size using the same materials, equipment and process flow, demonstrating the low cost and large area capabilities of the approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...