Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 196(11): 4447-51, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183572

RESUMO

Type I IFNs are critical in initiating protective antiviral immune responses, and plasmacytoid dendritic cells (pDCs) represent a major source of these cytokines. We show that only few pDCs are capable of producing IFN-ß after virus infection or CpG stimulation. Using IFNß/YFP reporter mice, we identify these IFN-ß-producing cells in the spleen as a CCR9(+)CD9(-) pDC subset that is localized exclusively within the T/B cell zones. IFN-ß-producing pDCs exhibit a distinct transcriptome profile, with higher expression of genes encoding cytokines and chemokines, facilitating T cell recruitment and activation. These distinctive characteristics of IFN-ß-producing pDCs are independent of the type I IFNR-mediated feedback loop. Furthermore, IFN-ß-producing pDCs exhibit enhanced CCR7-dependent migratory properties in vitro. Additionally, they effectively recruit T cells in vivo in a peritoneal inflammation model. We define "professional type I IFN-producing cells" as a distinct subset of pDCs specialized in coordinating cellular immune responses.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon beta/genética , Baço/citologia , Baço/imunologia , Transcriptoma , Animais , Interferon beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais
2.
Eur J Immunol ; 44(2): 500-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24136200

RESUMO

The DC-derived chemokine CCL17, a ligand of CCR4, has been shown to promote various inflammatory diseases such as atopic dermatitis, atherosclerosis, and inflammatory bowel disease. Under steady-state conditions, and even after systemic stimulation with LPS, CCL17 is not expressed in resident splenic DCs as opposed to CD8α⁻CD11b⁺ LN DCs, which produce large amounts of CCL17 in particular after maturation. Upon systemic NKT cell activation through α-galactosylceramide stimulation however, CCL17 can be upregulated in both CD8α⁻ and CD8α⁺ splenic DC subsets and enhances cross-presentation of exogenous antigens. Based on genome-wide expression profiling, we now show that splenic CD11b⁺ DCs are susceptible to IFN-γ-mediated suppression of CCL17, whereas LN CD11b⁺CCL17⁺ DCs downregulate the IFN-γR and are much less responsive to IFN-γ. Under inflammatory conditions, particularly in the absence of IFN-γ signaling in IFN-γRKO mice, CCL17 expression is strongly induced in a major proportion of splenic DCs by the action of GM-CSF in concert with IL-4. Our findings demonstrate that the local cytokine milieu and differential cytokine responsiveness of DC subsets regulate lymphoid organ specific immune responses at the level of chemokine expression.


Assuntos
Diferenciação Celular/imunologia , Microambiente Celular/imunologia , Células Dendríticas/metabolismo , Interferon gama/metabolismo , Interleucina-4/metabolismo , Receptores de Interferon/metabolismo , Baço/metabolismo , Animais , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Quimiocina CCL17/imunologia , Quimiocina CCL17/metabolismo , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interferon gama/imunologia , Interleucina-4/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interferon/deficiência , Receptores de Interferon/imunologia , Baço/imunologia , Receptor de Interferon gama
3.
Proc Natl Acad Sci U S A ; 109(10): 3897-902, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22355103

RESUMO

Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4(-/-) mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4(-/-) mice, indicating that CCR4(+) DCs are cellular mediators of EAE development. Mechanistically, CCR4(-/-) DCs were less efficient in GM-CSF and IL-23 production and also T(H)-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4(-/-) mice, whereas intracerebral inoculation using IL-23(-/-) DCs or GM-CSF(-/-) DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type.


Assuntos
Células Dendríticas/citologia , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-23/metabolismo , Receptores CCR4/fisiologia , Animais , Células da Medula Óssea/citologia , Encefalomielite Autoimune Experimental/metabolismo , Inflamação , Ligantes , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Receptores CCR4/metabolismo
4.
PLoS One ; 5(12): e15567, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21179567

RESUMO

Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNß, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNß is the first type I interferon to be produced, we took advantage of an IFNß fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNß production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNß+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNß+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNß+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNß producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNß.


Assuntos
Células Dendríticas/microbiologia , Corantes Fluorescentes/química , Interferon beta/metabolismo , Listeria monocytogenes/metabolismo , Listeriose/metabolismo , Animais , Separação Celular , Células Dendríticas/citologia , Citometria de Fluxo , Inflamação , Interferon-alfa/metabolismo , Interferon gama/metabolismo , Camundongos , Monócitos/citologia , Fenótipo , RNA Mensageiro/metabolismo
5.
J Leukoc Biol ; 87(6): 1083-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20200404

RESUMO

Class I PI3K-dependent signaling regulates cell proliferation, differentiation, and survival. Analysis of gene-deficient mice revealed specific roles for the hematopoietically expressed PI3K catalytic subunits, p110gamma and p110delta, in development and function of T and B lymphocytes. However, the functional redundancy between these two PI3K isoforms in the B cell lineage remains unclear. Here, we demonstrate that p110delta and p110gamma are expressed in B cells at early developmental stages. Normal B cell differentiation requires both isoforms, as p110gamma/p110delta double deficiency causes an increased percentage of CD43(hi)/B220(+)/CD19(-) cells as compared with single deficiency. Interestingly, initial transformation efficiency of B cell precursors was strongly reduced in double-deficient cells following transformation by p185 bcr-abl or v-abl oncogenes as compared with single-deficient cells. The requirement of p110gamma and p110delta in B cell development is underlined by reduced splenic B cell numbers of p110gamma/p110delta double-deficient mice and of lethally irradiated wild-type mice reconstituted with double-deficient BM. Moreover, the peripheral maintenance of p110gamma/p110delta double-deficient T and B cells was highly impaired following adoptive transfer of double-deficient splenocytes into wild-type mice. Functionally, LPS stimulation of splenocytes revealed proliferation defects resulting in decreased survival of p110gamma/p110delta double-deficient B cells, which correlated with impaired induction of D-type cyclins and Bcl-X(L). Surprisingly, this was not observed when purified B cells were analyzed, indicating a contribution of likely cell-extrinsic factor(s) to the impaired proliferation of double-deficient B cells. Thus, we provide novel evidence that p110gamma and p110delta have overlapping and cell-extrinsic roles in the development, peripheral maintenance, and function of B cells.


Assuntos
Linfócitos B/citologia , Proliferação de Células , Transformação Celular Neoplásica , Fosfatidilinositol 3-Quinases/fisiologia , Vírus da Leucemia Murina de Abelson/genética , Transferência Adotiva , Animais , Linfócitos B/metabolismo , Western Blotting , Medula Óssea/metabolismo , Diferenciação Celular , Classe I de Fosfatidilinositol 3-Quinases , Classe Ib de Fosfatidilinositol 3-Quinase , Feminino , Citometria de Fluxo , Genes abl/fisiologia , Isoenzimas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 105(51): 20416-21, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19088190

RESUMO

Type I interferons, a protein family of multiple IFNalphas and a single IFNbeta, initially identified on the basis of their antiviral activities have recently been attributed important roles in bacterial and parasitic infections. To assess the cellular sources of IFNbeta, the IFN produced first in most situations, we created an IFNbeta reporter-knockin mouse, in which yellow fluorescent protein (YFP) is expressed from a bicistronic mRNA linked by an internal ribosomal entry site to the endogenous IFNbeta mRNA. This YFP expression allows spatiotemporal tracking of the initiation of the type I IFN response on a single-cell level. In vitro bone marrow-derived macrophages (BMMPhis) and bone marrow-derived dendritic cells (BMDCs) show IFNbeta production from distinct cell subpopulations in response to defined pathogen compounds. A subpopulation of GMCSF-derived BMDCs produced IFNbeta after poly(I:C), 3'5'-cytidylylguanosine (CpG), or LPS treatment, whereas Flt3-L-cultured plasmacytoid DCs (pDCs) responded mainly to CpG. After poly(I:C) injection in vivo, IFNbeta-producing cells localize to the splenic marginal zone and the lymph node subcapsular sinus. Infection with murine cytomegalovirus (MCMV) induces IFNbeta/YFP expression exclusively in few activated pDCs at the T cell/B cell interface of the splenic white pulp. This IFNbeta/YFP reporter mouse represents a reliable tool for the visualization and characterization of IFNbeta-producing cells in vitro and in vivo.


Assuntos
Células Dendríticas/imunologia , Interferon beta/biossíntese , Técnicas de Sonda Molecular , Animais , Medula Óssea/imunologia , Células Dendríticas/metabolismo , Proteínas Luminescentes/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...