Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1196: 79-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560095

RESUMO

We describe the complete mitogenomes of the black corals Alternatipathesmirabilis Opresko & Molodtsova, 2021 and Parantipatheslarix (Esper, 1790) (Cnidaria, Anthozoa, Hexacorallia, Antipatharia, Schizopathidae). The analysed specimens include the holotype of Alternatipathesmirabilis, collected from Derickson Seamount (North Pacific Ocean; Gulf of Alaska) at 4,685 m depth and a potential topotype of Parantipatheslarix, collected from Secca dei Candelieri (Mediterranean Sea; Tyrrhenian Sea; Salerno Gulf; Italy) at 131 m depth. We also assemble, annotate and make available nine additional black coral mitogenomes that were included in a recent phylogeny (Quattrini et al. 2023b), but not made easily accessible on GenBank. This is the first study to present and compare two mitogenomes from the same species of black coral (Stauropathesarctica (Lütken, 1871)) and, thus, place minimum boundaries on the expected level of intraspecific variation at the mitogenome level. We also compare interspecific variation at the mitogenome-level across five different specimens of Parantipathes Brook, 1889 (representing at least two different species) from the NE Atlantic and Mediterranean Sea.

2.
J Exp Biol ; 223(Pt 9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32291325

RESUMO

Whereas upper ocean pelagic sharks are negatively buoyant and must swim continuously to generate lift from their fins, deep-sea sharks float or swim slowly buoyed up by large volumes of low-density oils in their livers. Investigation of the pressure, volume, temperature (PVT) relationships for liver oils of 10 species of deep-sea Chondrichthyes shows that the density difference between oil and seawater, Δρ, remains almost constant with pressure down to full ocean depth (11 km, 1100 bar), theoretically providing buoyancy far beyond the maximum depth of occurrence (3700 m) of sharks. However, Δρ does change significantly with temperature and we show that the combined effects of pressure and temperature can decrease buoyancy of oil by up to 10% between the surface and 3500 m depth across interfaces between warm southern and cold polar waters in the Rockall Trough in the NE Atlantic. This increases drag more than 10-fold compared with neutral buoyancy during horizontal slow swimming (0.1 m s-1), but the effect becomes negligible at high speeds. Chondrichthyes generally experience positive buoyancy change during ascent and negative buoyancy change during descent, but contrary effects can occur at interfaces between waters of different densities. During normal vertical migrations buoyancy changes are small, increasing slow-speed drag no more than 2- to 3-fold. Equations and tables of density, pressure and temperature are provided for squalene and liver oils of Chimaeriformes (Harriotta raleighana, Chimaera monstrosa, Hydrolagus affinis), Squaliformes (Centrophorus squamosus, Deania calcea, Centroscymnus coelolepis, Centroscyllium fabricii, Etmopterus spinax) and Carcharhiniformes (Apristurus laurussonii, Galeus murinus).


Assuntos
Tubarões , Animais , Peixes , Fígado , Óleos , Água do Mar
3.
Curr Biol ; 29(12): R562-R563, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31211971

RESUMO

The barnacle Anelasma squalicola is a marine epibiont found on members of the species-rich, deep-sea lantern shark family Etmopteridae (Figure 1A) but is unlike any other epibiotic thoracian barnacles [1]. While many barnacle species are associated with various marine animals including turtles and whales, with the exception of Anelasma these all retain a filter-feeding lifestyle and have a commensal relationship with their host; despite often being deeply embedded in the dermis, no other species has been reported as feeding on its host. Although Anelasma is fully equipped with cirri (thoracic appendages), these are no longer used for filter feeding [1]. Instead, Anelasma embeds a stalk with root-like structures into the flesh of the shark (Figure S1C in Supplemental Information, published with this article online) that it uses to parasitize its host. Here, we show that specimens of Anelasma sampled from all over the world show very little genetic differentiation, suggesting that this innovation coincided with a rapid worldwide expansion.


Assuntos
Distribuição Animal , Interações Hospedeiro-Parasita , Tubarões/parasitologia , Thoracica/genética , Animais , Dieta , Comportamento Alimentar , Simbiose , Thoracica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...