Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 24(2): 024208, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22173183

RESUMO

We investigate switching and field-driven domain wall motion in nanowires with perpendicular magnetic anisotropy comprising local modifications of the material parameters. Intentional nucleation and pinning sites with various geometries inside the nanowires are realized via a local reduction of the anisotropy constant. Micromagnetic simulations and analytical calculations are employed to determine the switching fields and to characterize the pinning potentials and the depinning fields. Nucleation sites in the simulations cause a significant reduction of the switching field and are in excellent agreement with analytical calculations. Pinning potentials and depinning fields caused by the pinning sites strongly depend on their shapes and are well explained by analytical calculations.

2.
Phys Rev Lett ; 106(13): 137201, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517417

RESUMO

We experimentally study the magnetization dynamics of pairs of micron-sized permalloy squares coupled via their stray fields. The trajectories of the vortex cores in the Landau-domain patterns of the squares are mapped in real space using time-resolved scanning transmission x-ray microscopy. After excitation of one of the vortex cores with a short magnetic-field pulse, the system behaves like coupled harmonic oscillators. The coupling strength depends on the separation between the squares and the configuration of the vortex-core polarizations. Considering the excitation via a rotating in-plane magnetic field, it can be understood that only a weak response of the second vortex core is observed for equal core polarizations.

3.
Phys Rev Lett ; 105(3): 037201, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867797

RESUMO

The influence of the magnetostatic interaction on vortex dynamics in arrays of ferromagnetic disks is investigated by means of a broadband ferromagnetic-resonance setup. Transmission spectra reveal a strong dependence of the resonance frequency of vortex-core motion on the ratio between the center-to-center distance and the element size. For a decreasing ratio, a considerable broadening of the absorption peak is observed following an inverse sixth power law. An analogy between the vortex system and rotating dipoles is confirmed by micromagnetic simulations.

4.
Phys Rev Lett ; 105(13): 137204, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230805

RESUMO

Topological singularities occur as antivortices in ferromagnetic thin-film microstructures. Antivortices behave as two-dimensional oscillators with a gyrotropic eigenmode which can be excited resonantly by spin currents and magnetic fields. We show that the two excitation types couple in an opposing sense of rotation in the case of resonant antivortex excitation with circular-rotational currents. If the sense of rotation of the current coincides with the intrinsic sense of gyration of the antivortex, the coupling to the Oersted fields is suppressed and only the spin-torque contribution locks into the gyrotropic eigenmode. We report on the experimental observation of purely spin-torque induced antivortex-core reversal. The dynamic response of an isolated antivortex is imaged by time-resolved scanning transmission x-ray microscopy on its genuine time and length scale.

5.
Phys Rev Lett ; 100(17): 176601, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18518316

RESUMO

Time-resolved x-ray microscopy is used to image the influence of alternating high-density currents on the magnetization dynamics of ferromagnetic vortices. Spin-torque-induced vortex gyration is observed in micrometer-sized permalloy squares. The phases of the gyration in structures with different chirality are compared to an analytical model and micromagnetic simulations, considering both alternating spin-polarized currents and the current's Oersted field. In our case the driving force due to spin-transfer torque is about 70% of the total excitation while the remainder originates from the current's Oersted field. This finding has implications to magnetic storage devices using spin-torque driven magnetization switching and domain-wall motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...