Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Liver Int ; 43(8): 1699-1713, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37073116

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a major health burden associated with the metabolic syndrome leading to liver fibrosis, cirrhosis and ultimately liver cancer. In humans, the PNPLA3 I148M polymorphism of the phospholipase patatin-like phospholipid domain containing protein 3 (PNPLA3) has a well-documented impact on metabolic liver disease. In this study, we used a mouse model mimicking the human PNPLA3 I148M polymorphism in a long-term high fat diet (HFD) experiment to better define its role for NAFLD progression. METHODS: Male mice bearing wild-type Pnpla3 (Pnpla3WT ), or the human polymorphism PNPLA3 I148M (Pnpla3148M/M ) were subjected to HFD feeding for 24 and 52 weeks. Further analysis concerning basic phenotype, inflammation, proliferation and cell death, fibrosis and microbiota were performed in each time point. RESULTS: After 52 weeks HFD Pnpla3148M/M animals had more liver fibrosis, enhanced numbers of inflammatory cells as well as increased Kupffer cell activity. Increased hepatocyte cell turnover and ductular proliferation were evident in HFD Pnpla3148M/M livers. Microbiome diversity was decreased after HFD feeding, changes were influenced by HFD feeding (36%) and the PNPLA3 I148M genotype (12%). Pnpla3148M/M mice had more faecal bile acids. RNA-sequencing of liver tissue defined an HFD-associated signature, and a Pnpla3148M/M specific pattern, which suggests Kupffer cell and monocytes-derived macrophages as significant drivers of liver disease progression in Pnpla3148M/M animals. CONCLUSION: With long-term HFD feeding, mice with the PNPLA3 I148M genotype show exacerbated NAFLD. This finding is linked to PNPLA3 I148M-specific changes in microbiota composition and liver gene expression showing a stronger inflammatory response leading to enhanced liver fibrosis progression.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Aciltransferases/genética , Dieta , Predisposição Genética para Doença , Genótipo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Fosfolipases A2 Independentes de Cálcio/metabolismo
3.
Mol Cell Endocrinol ; 570: 111934, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37085108

RESUMO

Bone morphogenetic protein (BMP)-9, a member of the TGFß-family of cytokines, is believed to be mainly produced in the liver. The serum levels of BMP-9 were reported to be reduced in newly diagnosed diabetic patients and BMP-9 overexpression ameliorated steatosis in the high fat diet-induced obesity mouse model. Furthermore, injection of BMP-9 in mice enhanced expression of fibroblast growth factor (FGF)21. However, whether BMP-9 also regulates the expression of the related FGF19 is not clear. Because both FGF21 and 19 were described to protect the liver from steatosis, we have further investigated the role of BMP-9 in this context. We first analyzed BMP-9 levels in the serum of streptozotocin (STZ)-induced diabetic rats (a model of type I diabetes) and confirmed that BMP-9 serum levels decrease during diabetes. Microarray analyses of RNA samples from hepatic and intestinal tissue from BMP-9 KO- and wild-type mice (C57/Bl6 background) pointed to basal expression of BMP-9 in both organs and revealed a down-regulation of hepatic Fgf21 and intestinal Fgf19 in the KO mice. Next, we analyzed BMP-9 levels in a cohort of obese patients with or without diabetes. Serum BMP-9 levels did not correlate with diabetes, but hepatic BMP-9 mRNA expression negatively correlated with steatosis in those patients that did not yet develop diabetes. Likewise, hepatic BMP-9 expression also negatively correlated with serum LPS levels. In situ hybridization analyses confirmed intestinal BMP-9 expression. Intestinal (but not hepatic) BMP-9 mRNA levels were decreased with diabetes and positively correlated with intestinal E-Cadherin expression. In vitro studies using organoids demonstrated that BMP-9 directly induces FGF19 in gut but not hepatocyte organoids, whereas no evidence of a direct induction of hepatic FGF21 by BMP-9 was found. Consistent with the in vitro data, a correlation between intestinal BMP-9 and FGF19 mRNA expression was seen in the patients' samples. In summary, our data confirm that BMP-9 is involved in diabetes development in humans and in the control of the FGF-axis. More importantly, our data imply that not only hepatic but also intestinal BMP-9 associates with diabetes and steatosis development and controls FGF19 expression. The data support the conclusion that increased levels of BMP-9 would most likely be beneficial under pre-steatotic conditions, making supplementation of BMP-9 an interesting new approach for future therapies aiming at prevention of the development of a metabolic syndrome and liver steatosis.


Assuntos
Diabetes Mellitus Experimental , Fígado Gorduroso , Humanos , Ratos , Camundongos , Animais , Fator 2 de Diferenciação de Crescimento/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , RNA Mensageiro/metabolismo
4.
PLoS One ; 10(7): e0133707, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218747

RESUMO

The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1ß (IL-1ß) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1ß production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1ß expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1ß are implicated in neuroinflammatory responses induced by LPS.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Neuralgia/metabolismo , Animais , Comportamento Animal , Proteínas de Transporte/genética , Modelos Animais de Doenças , Feminino , Formaldeído/toxicidade , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia/induzido quimicamente , Traumatismos dos Nervos Periféricos/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...