Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(4): e1010138, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404932

RESUMO

The PALB2 tumor suppressor plays key roles in DNA repair and has been implicated in redox homeostasis. Autophagy maintains mitochondrial quality, mitigates oxidative stress and suppresses neurodegeneration. Here we show that Palb2 deletion in the mouse brain leads to mild motor deficits and that co-deletion of Palb2 with the essential autophagy gene Atg7 accelerates and exacerbates neurodegeneration induced by ATG7 loss. Palb2 deletion leads to elevated DNA damage, oxidative stress and mitochondrial markers, especially in Purkinje cells, and co-deletion of Palb2 and Atg7 results in accelerated Purkinje cell loss. Further analyses suggest that the accelerated Purkinje cell loss and severe neurodegeneration in the double deletion mice are due to excessive oxidative stress and mitochondrial dysfunction, rather than DNA damage, and partially dependent on p53 activity. Our studies uncover a role of PALB2 in mitochondrial homeostasis and a cooperation between PALB2 and ATG7/autophagy in maintaining redox and mitochondrial homeostasis essential for neuronal survival.


Assuntos
Autofagia , Mitocôndrias , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Encéfalo/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi , Homeostase/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução
2.
J Biol Chem ; 297(1): 100873, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34126070

RESUMO

Macroautophagy dysregulation is implicated in multiple neurological disorders, such as Parkinson's disease. While autophagy pathways are heavily researched in heterologous cells and neurons, regulation of autophagy in the astrocyte, the most abundant cell type in the mammalian brain, is less well understood. Missense mutations in the Synj1 gene encoding Synaptojanin1 (Synj1), a neuron-enriched lipid phosphatase, have been linked to Parkinsonism with seizures. Our previous study showed that the Synj1 haploinsufficient (Synj1+/-) mouse exhibits age-dependent autophagy impairment in multiple brain regions. Here, we used cultured astrocytes from Synj1-deficient mice to investigate its role in astrocyte autophagy. We report that Synj1 is expressed in low levels in astrocytes and represses basal autophagosome formation. We demonstrate using cellular imaging that Synj1-deficient astrocytes exhibit hyperactive autophagosome formation, represented by an increase in the size and number of GFP-microtubule-associated protein 1A/1B-light chain 3 structures. Interestingly, Synj1 deficiency is also associated with an impairment in stress-induced autophagy clearance. We show, for the first time, that the Parkinsonism-associated R839C mutation impacts autophagy in astrocytes. The impact of this mutation on the phosphatase function of Synj1 resulted in elevated basal autophagosome formation that mimics Synj1 deletion. We found that the membrane expression of the astrocyte-specific glucose transporter GluT-1 was reduced in Synj1-deficient astrocytes. Consistently, AMP-activated protein kinase activity was elevated, suggesting altered glucose sensing in Synj1-deficient astrocytes. Expressing exogenous GluT-1 in Synj1-deficient astrocytes reversed the autophagy impairment, supporting a role for Synj1 in regulating astrocyte autophagy via disrupting glucose-sensing pathways. Thus, our work suggests a novel mechanism for Synj1-related Parkinsonism involving astrocyte dysfunction.


Assuntos
Astrócitos/metabolismo , Autofagossomos/metabolismo , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Monoéster Fosfórico Hidrolases/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagia , Células Cultivadas , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Regulação para Cima
3.
Glia ; 69(8): 1950-1965, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811383

RESUMO

It is well recognized that astrocytes can produce factors known to affect the myelination process. One such factor, brain-derived neurotrophic factor (BDNF), can enhance the differentiation of oligodendrocyte lineage cells following a demyelinating lesion. Our previous work indicated that enhancing astrocyte-derived BDNF via injection of a general agonist of Group I/II metabotropic glutamate receptors (mGluRs) into the lesion increased myelin proteins in the cuprizone model of demyelination after 4 hr. To determine if this observation has potential therapeutic significance, we now use a more specific mGluR agonist, 2-chloro-5-hydroxyphenylglycine (CHPG), which binds to mGluR5, to examine effects on myelination through the clinically relevant approach of a peripheral injection. In initial studies, intraperitoneal injection of CHPG resulted in an increase in myelin proteins within the lesioned corpus callosum. These effects were blocked when either BDNF or the CHPG receptor, mGluR5, was deleted from glial fibrillary acidic protein (GFAP)+ astrocytes or when the BDNF receptor, tropomyosin receptor kinase B (TrkB), was deleted from proteolipid protein (PLP)+ oligodendrocytes. Moreover, injection of CHPG over 2 weeks not only elevated BDNF and myelin proteins, but also enhanced myelination and reversed behavioral deficits. Interestingly, effects on myelin and myelin proteins were not seen in the control animals, indicating that a lesion is critical in eliciting effects. Taken together, the data suggest that the mGluR agonist CHPG may be a potential therapeutic strategy for treating demyelinating diseases and that it works by enhancing the release of BDNF from astrocytes.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Camundongos , Receptor de Glutamato Metabotrópico 5/metabolismo
4.
Brain Res ; 1764: 147464, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33812850

RESUMO

Astrocytes are traditionally recognized for their multiple roles in support of brain function. However, additional changes in these roles are evident in response to brain diseases. In this review, we highlight positive and negative effects of astrocytes in response to aging, Alzheimer's disease and Multiple Sclerosis. We summarize data suggesting that reactive astrocytes may perform critical functions that might be relevant to the etiology of these conditions. In particular, we relate astrocytes effects to actions on synaptic transmission, cognition, and myelination. We suggest that a better understanding of astrocyte functions and how these become altered in response to aging or disease will lead to the appreciation of these cells as useful therapeutic targets.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Astrócitos/patologia , Esclerose Múltipla/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade
5.
ASN Neuro ; 12: 1759091420957464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32927995

RESUMO

The levels of brain-derived neurotrophic factor (BDNF) in the corpus callosum have previously been shown to have a critical impact on oligodendrocyte (OLG) lineage cells during cuprizone-elicited demyelination. In particular, BDNF+/- mice exhibit greater losses in myelin protein levels compared to wild-type mice after cuprizone. To investigate whether OLGs may directly mediate these effects of BDNF during a lesion in vivo, we used the cuprizone model of demyelination with inducible conditional male knockout mice to specifically delete the high-affinity tropomyosin receptor kinase B (TrkB) receptor from proteolipid protein + OLGs during cuprizone-elicited demyelination and subsequent remyelination. The loss of TrkB during cuprizone-elicited demyelination results in an increased sensitivity to demyelination as demonstrated by greater deficits in myelin protein levels, greater decreases in numbers of mature OLGs, increased numbers of demyelinated axons, and decreased myelin thickness. When mice are removed from cuprizone, they exhibit a delayed recovery in myelin proteins and myelin. Our data indicate that following a demyelinating lesion, TrkB in OLGs positively regulates myelin protein expression, myelin itself, and remyelination.


Assuntos
Linhagem da Célula/fisiologia , Doenças Desmielinizantes/metabolismo , Glicoproteínas de Membrana/biossíntese , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteínas Tirosina Quinases/biossíntese , Animais , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Expressão Gênica , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Bainha de Mielina/genética , Bainha de Mielina/patologia , Oligodendroglia/patologia , Proteínas Tirosina Quinases/genética
6.
Neurochem Res ; 45(3): 541-550, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31983009

RESUMO

Astrocytes are well known to play critical roles in the development and maintenance of the central nervous system (CNS). Moreover, recent reports indicate that these cells are heterogeneous with respect to the molecules they express and the functions they exhibit in the quiescent or activated state. Because astrocytes also contribute to pathology, promising new results raise the possibility of manipulating specific astroglial populations for therapeutic roles. In this mini-review, we highlight the function of metabotropic glutamate receptors (mGluRs), in particular mGluR3 and mGluR5, in reactive astrocytes and relate these to three degenerative CNS diseases: multiple sclerosis, Alzheimer's disease and Amyotrophic Lateral Sclerosis. Previous studies demonstrate that effects of these receptors may be beneficial, but this varies depending on the subtype of receptor, the state of the astrocytes, and the specific disease to which they are exposed. Elucidating the role of mGluRs on astrocytes at specific times during development and disease will provide novel insights in understanding how to best use these to serve as therapeutic targets.


Assuntos
Astrócitos/metabolismo , Doenças Neurodegenerativas/terapia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
7.
Stem Cell Reports ; 12(5): 890-905, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091434

RESUMO

The process of oligodendrogenesis has been relatively well delineated in the rodent brain. However, it remains unknown whether analogous developmental processes are manifested in the human brain. Here we report oligodendrogenesis in forebrain organoids, generated by using OLIG2-GFP knockin human pluripotent stem cell (hPSC) reporter lines. OLIG2/GFP exhibits distinct temporal expression patterns in ventral forebrain organoids (VFOs) versus dorsal forebrain organoids (DFOs). Interestingly, oligodendrogenesis can be induced in both VFOs and DFOs after neuronal maturation. Assembling VFOs and DFOs to generate fused forebrain organoids (FFOs) promotes oligodendroglia maturation. Furthermore, dorsally derived oligodendroglial cells outcompete ventrally derived oligodendroglia and become dominant in FFOs after long-term culture. Thus, our organoid models reveal human oligodendrogenesis with ventral and dorsal origins. These models will serve to study the phenotypic and functional differences between human ventrally and dorsally derived oligodendroglia and to reveal mechanisms of diseases associated with cortical myelin defects.


Assuntos
Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo
8.
Cell Biosci ; 7: 59, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29142736

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a severe neurological disorder, characterized by demyelination of the central nervous system (CNS), and with a prevalence of greater than 2 million people worldwide. In terms of research in MS pathology, the cuprizone toxicity model is widely used. Here we investigated the contribution of genetic differences in response to cuprizone-induced demyelination in two genetically different mouse strains: CD1 and C57BL/6. RESULTS: We demonstrate that exposure to a diet containing 0.2% cuprizone resulted in less severe demyelination in the midline of the corpus callosum over the fornix in CD1 mice than C57BL/6 mice. With continuous cuprizone feeding, demyelination in CD1 mice was not prominent until after 7 weeks, in contrast to C57BL/6 mice, which showed prominent demyelination after 4 weeks of exposure. Concomitantly, immunohistochemical analysis demonstrated more oligodendrocytes, as well as fewer oligodendrocyte progenitor cells, microglia and astrocytes in cuprizone treated CD1 mice. We also analyzed 4-weeks-cuprizone treated corpus callosum tissue samples and found that cuprizone treated CD1 mice showed a smaller reduction of myelin-associated glycoprotein (MAG) and a smaller increase of Iba1 and NG2. CONCLUSIONS: These observations suggest that CD1 mice are less vulnerable to cuprizone-induced demyelination than C57BL/6 mice and thus genetic background factors appear to influence the susceptibility to cuprizone-induced demyelination.

9.
Exp Neurol ; 283(Pt B): 531-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27016070

RESUMO

A variety of growth factors are being explored as therapeutic agents relevant to the axonal and oligodendroglial deficits that occur as a result of demyelinating lesions such as are evident in Multiple Sclerosis (MS). This review focuses on five such proteins that are present in the lesion site and impact oligodendrocyte regeneration. It then presents approaches that are being exploited to manipulate the lesion environment affiliated with multiple neurodegenerative diseases and suggests that the utility of these approaches can extend to demyelination. Challenges are to further understand the roles of specific growth factors on a cellular and tissue level. Emerging technologies can then be employed to optimize the use of growth factors to ameliorate the deficits associated with demyelinating degenerative diseases.


Assuntos
Doenças Desmielinizantes/terapia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Humanos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo
10.
J Neurochem ; 135(2): 347-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173779

RESUMO

NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in inflammatory cells including microglia plays an important role in demyelination and free radical-mediated tissue injury in multiple sclerosis (MS). However, the mechanism underlying microglial ROS production and demyelination remains largely unknown. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. In the present study, we sought to determine the role of microglial Hv1 proton channels in a mouse model of cuprizone-induced demyelination, a model for MS. Following cuprizone exposure, wild-type mice presented obvious demyelination, decreased myelin basic protein expression, loss of mature oligodendrocytes, and impaired motor coordination in comparison to mice on a normal chow diet. However, mice lacking Hv1 (Hv1(-/-) ) are partially protected from demyelination and motor deficits compared with those in wild-type mice. These rescued phenotypes in Hv1(-/-) mice in cuprizone-induced demyelination is accompanied by reduced ROS production, ameliorated microglial activation, increased oligodendrocyte progenitor cell (NG2) proliferation, and increased number of mature oligodendrocytes. These results demonstrate that the Hv1 proton channel is required for cuprizone-induced microglial oxidative damage and subsequent demyelination. Our study suggests that the microglial Hv1 proton channel is a unique target for controlling NOX-dependent ROS production in the pathogenesis of MS.


Assuntos
Quelantes/toxicidade , Cuprizona/toxicidade , Doenças Desmielinizantes/patologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Microglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Doenças Desmielinizantes/induzido quimicamente , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Proteína Básica da Mielina/metabolismo , NADPH Oxidases/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Espécies Reativas de Oxigênio
11.
ASN Neuro ; 7(1)2015.
Artigo em Inglês | MEDLINE | ID: mdl-25586993

RESUMO

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that through its neurotrophic tyrosine kinase, receptor, type 2 (TrkB) receptor, increases 5-bromo-2-deoxyuridine incorporation in oligodendrocyte progenitor cells (OPCs) in culture. Roles in vivo are less well understood; however, increases in numbers of OPCs are restricted in BDNF+/- mice following cuprizone-elicited demyelination. Here, we investigate whether these blunted increases in OPCs are associated with changes in proliferation. BDNF+/+ and BDNF+/- mice were fed cuprizone-containing or control feed. To assess effects on OPC numbers, platelet-derived growth factor receptor alpha (PDGFRα)+ or NG2+ cells were counted. To monitor DNA synthesis, 5-ethynyl-2'-deoxyuridine (EdU) was injected intraperitoneally and colocalized with PDGFRα+ cells. Alternatively, proliferating cell nuclear antigen (PCNA) was colocalized with PDGFRα or NG2. Labeling indices were determined in the BDNF+/+ and BDNF+/- animals. After 4 or 5 weeks of control feed, BDNF+/- mice exhibit similar numbers of OPCs compared with BDNF+/+ animals. The labeling indices for EdU and PCNA also were not significantly different, suggesting that neither the DNA synthesis phase (S phase) nor the proliferative pool size was different between genotypes. In contrast, when mice were challenged by cuprizone for 4 or 5 weeks, increases in OPCs observed in BDNF+/+ mice were reduced in the BDNF+/- mice. This difference in elevations in cell number was accompanied by decreases in EdU labeling and PCNA labeling without changes in cell death, indicating a reduction in the DNA synthesis and the proliferative pool. Therefore, levels of BDNF influence the proliferation of OPCs resulting from a demyelinating lesion.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/deficiência , Proliferação de Células/genética , Doenças Desmielinizantes/patologia , Regulação da Expressão Gênica/genética , Oligodendroglia/fisiologia , Células-Tronco/metabolismo , Animais , Antígenos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Monoaminoxidase/toxicidade , Compostos de Fenilureia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células-Tronco/efeitos dos fármacos , Fatores de Tempo
12.
J Neurosci ; 34(24): 8186-96, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920623

RESUMO

It is well established that BDNF may enhance oligodendrocyte differentiation following a demyelinating lesion, however, the endogenous sources of BDNF that may be harnessed to reverse deficits associated with such lesions are poorly defined. Here, we investigate roles of astrocytes in synthesizing and releasing BDNF. These cells are known to express BDNF following injury in vivo. In culture, they increase BDNF synthesis and release in response to glutamate metabotropic stimulation. Following cuprizone-elicited demyelination in mice, astrocytes contain BDNF and increase levels of metabotropic receptors. The metabotropic agonist, trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD), was therefore injected into the demyelinating lesion. Increases in BDNF, as well as myelin proteins, were observed. Effects of ACPD were eliminated by coinjection of trkB-Fc to locally deplete BDNF and by deletion of astrocyte-derived BDNF. The data indicate that astrocyte-derived BDNF may be a source of trophic support that can be used to reverse deficits elicited following demyelination.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Proteínas da Mielina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Doenças Desmielinizantes/tratamento farmacológico , Dioxolanos/farmacologia , Modelos Animais de Doenças , Antagonistas de Estrogênios/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Purinas/farmacologia , RNA não Traduzido/genética , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tamoxifeno/uso terapêutico
13.
Methods Mol Biol ; 1018: 71-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23681618

RESUMO

The use of cultures has informed us of functions and regulation of astrocytes that were previously unknown. This chapter details the methods that result in such cultures.


Assuntos
Astrócitos/citologia , Técnicas de Cultura de Células/métodos , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Separação Celular , Células Cultivadas , Meios de Cultura/farmacologia , Dissecação , Ratos , Ratos Sprague-Dawley
14.
Methods Mol Biol ; 1018: 81-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23681619

RESUMO

The use of enriched oligodendrocyte lineage cell cultures has yielded insight into functions of these cells and regulatory mechanisms. This chapter details methods that result in such cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem da Célula , Oligodendroglia/citologia , Animais , Animais Recém-Nascidos , Separação Celular , Células Cultivadas , Dissecação , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia
16.
J Neurosci ; 31(40): 14182-90, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21976503

RESUMO

Previous work in culture has shown that basal forebrain (BF) oligodendrocyte (OLG) lineage cells respond to BDNF by increasing DNA synthesis and differentiation. Further, in the BF in vivo, reduced levels of BDNF as seen in BDNF(+/-) mice result in reduced numbers of NG2+ cells and deficits in myelin proteins throughout development and in the adult, suggesting that BDNF impacts the proliferating population of OLGs as well as differentiation in vivo. In this study, to investigate the roles BDNF may play in the repair of a demyelinating lesion, the cuprizone model was used and the corpus callosum was examined. BDNF protein levels were reduced after cuprizone treatment, suggesting that the demyelinating lesion itself elicits a decrease in BDNF. To analyze the effects of a further reduction of BDNF on OLG lineage cells following cuprizone, BDNF(+/-) mice were evaluated. These mice exhibited a blunted increase in the NG2 response at 4 and 5 weeks of cuprizone treatment. In addition, BDNF(+/-) mice exhibited decreased levels of myelin proteins during the demyelination and remyelination processes with no change in the total number of OLGs. These effects appear to be relatively specific to OLG lineage cells as comparable changes in CD11b+ microglia, GFAP+ astrocytes, and SMI32+ injured axons were not observed. These data indicate that BDNF may play a role following a demyelinating lesion by regulating the numbers of progenitors and the abilities of demyelinating and differentiating cells to express myelin proteins.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Linhagem da Célula/fisiologia , Cuprizona/toxicidade , Oligodendroglia/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Contagem de Células , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Quelantes/toxicidade , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas da Mielina/antagonistas & inibidores , Proteínas da Mielina/biossíntese , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos
17.
Glia ; 58(7): 848-56, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20091777

RESUMO

Previous work indicated that brain-derived neurotrophic factor (BDNF), through the trkB receptor, increases DNA synthesis in oligodendrocyte (OLG) progenitor cells (OPCs) and differentiation of postmitotic OLGs of the basal forebrain (BF). In the present studies, BDNF knockout animals were used to investigate BDNF's effects on OLG lineage cells (OLCs) in vivo. OLCs of the BF were found to express the trkB receptor, suggesting they are responsive to BDNF. Immunohistochemistry using NG2 and CC1 antibodies was utilized to examine the numbers of NG2+ OPCs and CC1+ postmitotic BF OLGs. At embryonic day 17 (E17), BDNF-/- animals display reduced NG2+ cells. This reduction was also observed in BDNF+/- mice at E17 and at postnatal day 1 (P1), P14, and adult stage, suggesting that BDNF plays a role in OPC development. BDNF+/- mice do not exhibit deficits in numbers of CC1+ OLGs. However, myelin basic protein, myelin associated glycoprotein, and proteolipid protein are reduced in BDNF+/- mice, suggesting that BDNF plays a role in differentiation. These data indicate that progenitor cells and myelin proteins may be affected in vivo by a decrease in BDNF.


Assuntos
Núcleo Basal de Meynert/embriologia , Núcleo Basal de Meynert/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem da Célula/genética , Oligodendroglia/metabolismo , Células-Tronco/metabolismo , Animais , Antígenos/metabolismo , Proteínas Relacionadas à Autofagia , Núcleo Basal de Meynert/crescimento & desenvolvimento , Biomarcadores/metabolismo , Diferenciação Celular/genética , Regulação para Baixo/fisiologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas da Mielina/metabolismo , Oligodendroglia/citologia , Proteoglicanas/metabolismo , Receptor trkB/metabolismo , Células-Tronco/citologia
18.
ASN Neuro ; 1(1)2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19570026

RESUMO

A number of studies suggest that OLGs (oligodendrocytes), the myelinating cells of the central nervous system, are also a source of trophic molecules, such as neurotrophins that may influence survival of proximate neurons. What is less clear is how the release of these molecules may be regulated. The present study investigated the effects of BDNF (brain-derived neurotrophic factor) derived from cortical OLGs on proximate neurons, as well as regulatory mechanisms mediating BDNF release. Initial work determined that BDNF derived from cortical OLGs increased the numbers of VGLUT1 (vesicular glutamate transporter 1)-positive glutamatergic cortical neurons. Furthermore, glutamate acting through metabotropic, and not AMPA/kainate or NMDA (N-methyl-d-aspartate), receptors increased BDNF release. The PLC (phospholipase C) pathway is a key mediator of metabotropic actions to release BDNF in astrocytes and neurons. Treatment of OLGs with the PLC activator m-3M3FBS [N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide] induced robust release of BDNF. Moreover, release elicited by the metabotropic receptor agonist ACPD [trans-(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] was inhibited by the PLC antagonist U73122, the IP3 (inositol triphosphate 3) receptor inhibitor 2-APB (2-aminoethoxydiphenylborane) and the intracellular calcium chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)]. Taken together, these results suggest that OLG lineage cells release BDNF, a molecule trophic for proximate neurons. BDNF release is regulated by glutamate acting through mGluRs (metabotropic glutamate receptors) and the PLC pathway. Thus glutamate and BDNF may be molecules that support neuron-OLG interactions in the cortex.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Oligodendroglia/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/enzimologia , Feminino , Oligodendroglia/enzimologia , Gravidez , Ratos , Ratos Sprague-Dawley
19.
J Neurosci Res ; 87(1): 69-78, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18752299

RESUMO

Previous work has indicated that BDNF increases the differentiation of basal forebrain (BF) oligodendrocytes (OLGs) in culture through the mediation of trkB and the MAPK pathway (Du et al. [ 2006a, b] Mol. Cell. Neurosci. 31:366-375; J. Neurosci. Res. 84:1692-1702). In the present work, effects of BDNF on BF OLG progenitor cells (OPCs) were examined. BDNF increased DNA synthesis of OPCs, as assessed by thymidine and bromodeoxyuridine incorporation. Effects of BDNF on DNA synthesis were mediated through the trkB receptor and not the p75 receptor, as shown by inhibitors that block neurotrophin binding to the receptors and by the phosphorylation of trkB. TrkB can activate the mitogen- activated protein kinase (MAPK), phosphatidylinositol-3 kinase (PI3-K), and phospholipase C-gamma (PLC-gamma) pathways. BDNF elicited the phosphorylation of MAPK and Akt, a kinase downstream of PI3K, but not PLC-gamma in OPCs. Through the use of specific inhibitors to the MAPK and PI3-K pathways, it was found that the MAPK pathway was responsible for the effect of BDNF on DNA synthesis. These data indicate that BDNF affects OPC proliferation and development through the mediation of trkB and the MAPK pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oligodendroglia/fisiologia , Prosencéfalo/citologia , Receptor trkB/metabolismo , Células-Tronco/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Gangliosídeos/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Gravidez , Ratos , Receptor trkB/imunologia , Timidina/metabolismo
20.
Restor Neurol Neurosci ; 26(1): 35-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18431004

RESUMO

PURPOSE: It is well established that cholinergic neurons of the basal forebrain degenerate in Alzheimer's dementia. Although recent studies were concentrated on screening molecules that might reduce the concomitant cell loss, little is known about therapeutically promising molecules. We studied the effect of Semax (Met-Glu-His-Phe-Pro-Gly-Pro), a behaviorally active adrenocorticotropic hormone (4-10) analogue, on survival of cholinergic basal forebrain neurons in vitro. Semax is known to stimulate learning and memory and can be successfully used for treatment of ischemic stroke. METHODS: Primary cultures of neuronal and glial cells from basal forebrain of rats were used in all experiments. The stability of Semax in cell cultures was tested by HPLC analysis. Cell survival in neuronal cultures was quantitated using immocytochemical and cytochemical analyses as well as detection of choline acetyltransferase activity. RESULTS: We have shown that Semax may approximately 1.5-1.7 fold increase survival of cholinergic basal forebrain neurons in vitro. Moreover, Semax (100 nM) stimulated activity of choline acetyltransferase in dissociated basal forebrain tissue cultures. However, the numbers of GABA-ergic neurons, total neuron specific enolase neurons were not affected. In concentration from 1 nM to 10 microM, Semax did not affect proliferation of glial cells in primary cultures. CONCLUSION: Implications of these findings with respect to Alzheimer's disease remain to be clarified.


Assuntos
Hormônio Adrenocorticotrópico/análogos & derivados , Colina O-Acetiltransferase/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Prosencéfalo/citologia , Hormônio Adrenocorticotrópico/farmacologia , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Ratos , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...