Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507361

RESUMO

The bacterial flagellum is a complex structure formed by more than 25 different proteins, this appendage comprises three conserved structures: the basal body, the hook and filament. The basal body, embedded in the cell envelope, is the most complex structure and houses the export apparatus and the motor. In situ images of the flagellar motor in different species have revealed a huge diversity of structures that surround the well-conserved periplasmic components of the basal body. The identity of the proteins that form these novel structures in many cases has been elucidated genetically and biochemically, but in others they remain to be identified or characterized. In this work, we report that in the alpha proteobacteria Cereibacter sphaeroides the novel protein MotK along with MotE are essential for flagellar rotation. We show evidence that these periplasmic proteins interact with each other and with MotB2. Moreover, these proteins localize to the flagellated pole and MotK localization is dependent on MotB2 and MotA2. These results together suggest that the role of MotK and MotE is to activate or recruit the flagellar stators to the flagellar structure.


Assuntos
Proteínas de Bactérias , Proteínas Periplásmicas , Proteínas de Bactérias/metabolismo , Proteínas Periplásmicas/metabolismo , Rotação , Flagelos/metabolismo , Periplasma/metabolismo
2.
mBio ; 13(4): e0148122, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35876508

RESUMO

In alphaproteobacteria, the two-component system (TCS) formed by the hybrid histidine kinase CckA, the phosphotransfer protein ChpT, and the response regulator CtrA is widely distributed. In these microorganisms, this system controls diverse functions such as motility, DNA repair, and cell division. In Caulobacterales and Rhizobiales, CckA is regulated by the pseudo- histidine kinase DivL, and the response regulator DivK. However, this regulatory circuit differs for other bacterial groups. For instance, in Rhodobacterales, DivK is absent and DivL consists of only the regulatory PAS domain. In this study, we report that, in Rhodobacter sphaeroides, the kinase activity of CckA is inhibited by Osp, a single domain response regulator (SDRR) protein that directly interacts with the transmitter domain of CckA. In vitro, the kinase activity of CckA was severely inhibited with an equimolar amount of Osp, whereas the phosphatase activity of CckA was not affected. We also found that the expression of osp is activated by CtrA creating a negative feedback loop. However, under growth conditions known to activate the TCS, the increased expression of osp does not parallel Osp accumulation, indicating a complex regulation. Phylogenetic analysis of selected species of Rhodobacterales revealed that Osp is widely distributed in several genera. For most of these species, we found a sequence highly similar to the CtrA-binding site in the control region of osp, suggesting that the TCS CckA/ChpT/CtrA is controlled by a novel regulatory circuit that includes Osp in these bacteria. IMPORTANCE The two-component systems (TCS) in bacteria in its simplest architecture consist of a histidine kinase (HK) and a response regulator (RR). In response to a specific stimulus, the HK is activated and drives phosphorylation of the RR, which is responsible of generating an adaptive response. These systems are ubiquitous among bacteria and are frequently controlled by accessory proteins. In alphaproteobacteria, the TCS formed by the HK CckA, the phosphotransferase ChpT, and the RR CtrA is widely distributed. Currently, most of the information of this system and its regulatory proteins comes from findings carried out in microorganisms where it is essential. However, this is not the case in many species, and studies of this TCS and its regulatory proteins are lacking. In this study, we found that Osp, a RR-like protein, inhibits the kinase activity of CckA in a negative feedback loop since osp expression is activated by CtrA. The inhibitory role of Osp and the similar action of the previously reported FixT protein, suggests the existence of a new group of RR-like proteins whose main function is to interact with the HK and prevent its phosphorylation.


Assuntos
Alphaproteobacteria , Regulação Bacteriana da Expressão Gênica , Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Retroalimentação , Histidina Quinase/genética , Histidina Quinase/metabolismo , Fosforilação , Filogenia , Fatores de Transcrição/metabolismo
3.
J Bacteriol ; 203(20): e0037221, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34309398

RESUMO

Macromolecular cell-envelope-spanning structures such as the bacterial flagellum must traverse the cell wall. Lytic transglycosylase enzymes are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. In the periplasmic space, the assembly of the flagellar rod requires the scaffold protein FlgJ, which includes a muramidase domain in the canonical models Salmonella enterica and Escherichia coli. In contrast, in Rhodobacter sphaeroides, FlgJ and the dedicated flagellar lytic transglycosylase SltF are separate entities that interact in the periplasm. In this study, we show that sltF is expressed, along with the genes encoding the early components of the flagellar hierarchy that include the hook-basal body proteins, making SltF available during the rod assembly. Protein-protein interaction experiments demonstrated that SltF interacts with the rod proteins FliE, FlgB, FlgC, FlgF, and FlgG through its C-terminal region. A deletion analysis that divides the C terminus in two halves revealed that the interacting regions for most of the rod proteins are not redundant. Our results also show that the presence of the rod proteins FliE, FlgB, FlgC, and FlgF displace the previously reported SltF-FlgJ interaction. In addition, we observed modulation of the transglycosylase activity of SltF mediated by FlgB and FlgJ that could be relevant to coordinate rod assembly with cell wall remodeling. In summary, different mechanisms regulate the flagellar lytic transglycosylase, SltF, ensuring a timely transcription, a proper localization and a controlled enzymatic activity. IMPORTANCE Several mechanisms participate in the assembly of cell-envelope-spanning macromolecular structures. The sequential expression of substrates to be exported, selective export, and a specific order of incorporation are some of the mechanisms that stand out to drive an efficient assembly process. Here, we analyze how the structural rod proteins, the scaffold protein FlgJ and the flagellar lytic enzyme SltF, interact in an orderly fashion to assemble the flagellar rod into the periplasmic space. A complex arrangement of transient interactions directs a dedicated flagellar muramidase toward the flagellar rod. All of these interactions bring this protein to the proximity of the peptidoglycan wall while also modulating its enzymatic activity. This study suggests how a dynamic network of interactions participates in controlling SltF, a prominent component for flagellar formation.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/genética , Flagelos/genética , Rhodobacter sphaeroides/genética
4.
Microbiology (Reading) ; 167(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33620307

RESUMO

Rhodobacter sphaeroides can use C4-dicarboxylic acids to grow heterotrophically or photoheterotropically, and it was previously demonstrated in Rhodobacter capsulatus that the DctPQM transporter system is essential to support growth using these organic acids under heterotrophic but not under photoheterotrophic conditions. In this work we show that in R. sphaeroides this transporter system is essential for photoheterotrophic and heterotrophic growth, when C4-dicarboxylic acids are used as a carbon source. We also found that over-expression of dctPQM is detrimental for photoheterotrophic growth in the presence of succinic acid in the culture medium. In agreement with this, we observed a reduction of the dctPQM promoter activity in cells growing under these conditions, indicating that the amount of DctPQM needs to be reduced under photoheterotrophic growth. It has been reported that the two-component system DctS and DctR activates the expression of dctPQM. Our results demonstrate that in the absence of DctR, dctPQM is still expressed albeit at a low level. In this work, we have found that the periplasmic component of the transporter system, DctP, has a role in both transport and in signalling the DctS/DctR two-component system.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Ácidos Dicarboxílicos/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Processos Heterotróficos , Luz , Proteínas de Membrana Transportadoras/genética , Periplasma/genética , Processos Fototróficos , Regiões Promotoras Genéticas , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/efeitos da radiação , Ácido Succínico/metabolismo
5.
Biomolecules ; 10(5)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429424

RESUMO

Rhodobacter sphaeroides is an α-proteobacterium that has the particularity of having two functional flagellar systems used for swimming. Under the growth conditions commonly used in the laboratory, a single subpolar flagellum that traverses the cell membrane, is assembled on the surface. This flagellum has been named Fla1. Phylogenetic analyses have suggested that this flagellar genetic system was acquired from an ancient γ-proteobacterium. It has been shown that this flagellum has components homologous to those present in other γ-proteobacteria such as the H-ring characteristic of the Vibrio species. Other features of this flagellum such as a straight hook, and a prominent HAP region have been studied and the molecular basis underlying these features has been revealed. It has also been shown that FliL, and the protein MotF, mainly found in several species of the family Rhodobacteraceae, contribute to remodel the amphipathic region of MotB, known as the plug, in order to allow flagellar rotation. In the absence of the plug region of MotB, FliL and MotF are dispensable. In this review we have covered the most relevant aspects of the Fla1 flagellum of this remarkable photosynthetic bacterium.


Assuntos
Flagelos/genética , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/química , Flagelos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Rhodobacter sphaeroides/genética
6.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31932315

RESUMO

Activation of the two-component system formed by CckA, ChpT, and CtrA (kinase, phosphotransferase, and response regulator, respectively) in Rhodobacter sphaeroides does not occur under the growth conditions commonly used in the laboratory. However, it is possible to isolate a gain-of-function mutant in CckA that turns the system on. Using massive parallel transcriptome sequencing (RNA-seq), we identified 321 genes that are differentially regulated by CtrA. From these genes, 239 were positively controlled and 82 were negatively regulated. Genes encoding the Fla2 polar flagella and gas vesicle proteins are strongly activated by CtrA. Genes involved in stress responses as well as several transcriptional factors are also positively controlled, whereas the photosynthetic and CO2 fixation genes are repressed. Potential CtrA-binding sites were bioinformatically identified, leading to the proposal that at least 81 genes comprise the direct regulon. Based on our results, we ponder that the transcriptional response orchestrated by CtrA enables a lifestyle in which R. sphaeroides will effectively populate the surface layer of a water body enabled by gas vesicles and will remain responsive to chemotactic stimuli using the chemosensoring system that controls the Fla2 flagellum. Simultaneously, fine-tuning of photosynthesis and stress responses will reduce the damage caused by heat and high light intensity in this water stratum. In summary, in this bacterium CtrA has evolved to control physiological responses that allow its adaptation to a particular lifestyle instead of controlling the cell cycle as occurs in other species.IMPORTANCE Cell motility in Alphaproteobacteria is frequently controlled by the CckA, ChpT, and CtrA two-component system. Under the growth conditions commonly used in the laboratory, ctrA is transcriptionally inactive in Rhodobacter sphaeroides, and motility depends on the Fla1 flagellar system that was acquired by a horizontal transfer event. Likely, the incorporation of this flagellar system released CtrA from the strong selective pressure of being the main motility regulator, allowing this two-component system to specialize and respond to some specific conditions. Identifying the genes that are directly regulated by CtrA could help us understand the conditions in which the products of this regulon are required. Massive parallel transcriptome sequencing (RNA-seq) revealed that CtrA orchestrates an adaptive response that contributes to the colonization of a particular environmental niche.


Assuntos
Adaptação Biológica , Regulação Bacteriana da Expressão Gênica , Rhodobacter sphaeroides/fisiologia , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Sequência Conservada , Perfilação da Expressão Gênica , Fotossíntese , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Fatores de Transcrição/metabolismo
7.
AMB Express ; 9(1): 155, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31555910

RESUMO

Phasins are amphiphilic proteins involved in the regulation of the number and size of polyhydroxybutyrate (PHB) granules. The plant growth promoting bacterium Azospirillum brasilense Sp7 accumulates high quantities of bioplastic PHB as carbon and energy source. By analyzing the genome, we identified six genes that code for proteins with a Phasin_2 domain. To understand the role of A. brasilense Sp7 PhaP1 (PhaP1Abs) on PHB synthesis, the phaP1 gene (AMK58_RS17065) was deleted. The morphology of the PHB granules was analyzed by transmission electron microscopy (TEM) and the PHB produced was quantified under three different C:N ratios in cultures subjected to null or low-oxygen transfer. The results showed that PhaP1Abs is involved in PHB granules morphology and in controlling early biopolymer accumulation. Using RT-PCR it was found that phasin genes, except phaP4, are transcribed in accordance with the C:N ratio used for the growth of A. brasilense. phaP1, phaP2 and phaP3 genes were able to respond to the growth conditions tested. This study reports the first analysis of a phasin protein in A. brasilense Sp7.

8.
J Bacteriol ; 201(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559113

RESUMO

The flagellar lipoprotein FlgP has been identified in several species of bacteria, and its absence provokes different phenotypes. In this study, we show that in the alphaproteobacterium Rhodobacter sphaeroides, a ΔflgP mutant is unable to assemble the hook and the filament. In contrast, the membrane/supramembrane (MS) ring and the flagellar rod appear to be assembled. In the absence of FlgP a severe defect in the transition from rod to hook polymerization occurs. In agreement with this idea, we noticed a reduction in the amount of intracellular flagellin and the chemotactic protein CheY4, both encoded by genes dependent on σ28 This suggests that in the absence of flgP the switch to export the anti-sigma factor, FlgM, does not occur. The presence of FlgP was detected by Western blot in samples of isolated wild-type filament basal bodies, indicating that FlgP is an integral part of the flagellar structure. In this regard, we show that FlgP interacts with FlgH and FlgT, indicating that FlgP should be localized closely to the L and H rings. We propose that FlgP could affect the architecture of the L ring, which has been recently identified to be responsible for the rod-hook transition.IMPORTANCE Flagellar based motility confers a selective advantage on bacteria by allowing migration to favorable environments or in pathogenic species to reach the optimal niche for colonization. The flagellar structure has been well established in Salmonella However, other accessory components have been identified in other species. Many of these have been implied in adapting the flagellar function to enable faster rotation, or higher torque. FlgP has been proposed to be the main component of the basal disk located underlying the outer membrane in Campylobacter jejuni and Vibrio fischeri Its role is still unclear, and its absence impacts motility differently in different species. The study of these new components will bring a better understanding of the evolution of this complex organelle.


Assuntos
Flagelos/metabolismo , Flagelina/metabolismo , Lipoproteínas/metabolismo , Rhodobacter sphaeroides/fisiologia , Western Blotting , Flagelos/fisiologia , Flagelina/genética , Deleção de Genes , Lipoproteínas/deficiência , Mapeamento de Interação de Proteínas , Rhodobacter sphaeroides/genética
9.
BMC Microbiol ; 18(1): 129, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305031

RESUMO

BACKGROUND: Rhodobacter sphaeroides has two sets of flagellar genes, fla1 and fla2, that are responsible for the synthesis of two different flagellar structures. The expression of the fla2 genes is under control of CtrA. In several α-proteobacteria CtrA is also required for the expression of the flagellar genes, but the architecture of CtrA-dependent promoters has only been studied in detail in Caulobacter crescentus. In many cases the expression of fla genes originates from divergent promoters located a few base pairs apart, suggesting a particular arrangement of the cis-acting sites. RESULTS: Here we characterized several control regions of the R. sphaeroides fla2 genes and analyzed in detail two regions containing the divergent promoters flgB2p-fliI2p, and fliL2p-fliF2p. Binding sites for CtrA of these promoters were identified in silico and tested by site directed mutagenesis. We conclude that each one of these promoter regions has a particular arrangement, either a single CtrA binding site for activation of fliL2p and fliF2p, or two independent sites for activation of flgB2p and fliI2p. ChIP experiments confirmed that CtrA binds to the control region containing the flgB2 and fliI2 promoters, supporting the notion that CtrA directly controls the expression of the fla2 genes. The flgB and fliI genes are syntenic and show a short intercistronic region in closely related bacterial species. We analyzed these regions and found that the arrangement of the CtrA binding sites varies considerably. CONCLUSIONS: The results in this work reveal the arrangement of the fla2 divergent promoters showing that CtrA promotes transcriptional activation using more than a single architecture.


Assuntos
Proteínas de Bactérias/genética , Flagelos/metabolismo , Regiões Promotoras Genéticas , Rhodobacter sphaeroides/genética , Ativação Transcricional , Sítios de Ligação/genética , Quimiotaxia , DNA Intergênico/genética , Proteínas de Ligação a DNA , Regulação Bacteriana da Expressão Gênica
10.
J Bacteriol ; 200(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30061356

RESUMO

In this work, we have characterized the soluble lytic transglycosylase (SltF) from Rhodobacter sphaeroides that interacts with the scaffolding protein FlgJ in the periplasm to open space at the cell wall peptidoglycan heteropolymer for the emerging rod. The characterization of the genetic context of flgJ and sltF in alphaproteobacteria shows that these two separate genes coexist frequently in a flagellar gene cluster. Two domains of unknown function in SltF were studied, and the results show that the deletion of a 17-amino-acid segment near the N terminus does not show a recognizable phenotype, whereas the deletion of 47 and 95 amino acids of the C terminus of SltF disrupts the interaction with FlgJ without affecting the transglycosylase catalytic activity of SltF. These mutant proteins are unable to support swimming, indicating that the physical interaction between SltF and FlgJ is central for flagellar formation. In a maximum likelihood tree of representative lytic transglycosylases, all of the flagellar SltF proteins cluster in subfamily 1F. From this analysis, it was also revealed that the lytic transglycosylases related to the type III secretion systems present in pathogens cluster with the closely related flagellar transglycosylases.IMPORTANCE Flagellar biogenesis is a highly orchestrated event where the flagellar structure spans the bacterial cell envelope. The rod diameter of approximately 4 nm is larger than the estimated pore size of the peptidoglycan layer; hence, its insertion requires the localized and controlled lysis of the cell wall. We found that a 47-residue domain of the C terminus of the lytic transglycosylase (LT) SltF of R. sphaeroides is involved in the recognition of the rod chaperone FlgJ. We also found that in many alphaproteobacteria, the flagellar cluster includes a homolog of SltF and FlgJ, indicating that association of an LT with the flagellar machinery is ancestral. A maximum likelihood tree shows that family 1 of LTs segregates into seven subfamilies.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/enzimologia , Glicosiltransferases/metabolismo , Filogenia , Rhodobacter sphaeroides/enzimologia , Proteínas de Bactérias/genética , Flagelos/genética , Glicosiltransferases/genética , Funções Verossimilhança , Mutação , Peptidoglicano/metabolismo , Rhodobacter sphaeroides/genética , Deleção de Sequência , Sistemas de Secreção Tipo III/genética
11.
Biochim Biophys Acta Bioenerg ; 1858(7): 497-509, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28472636

RESUMO

Mitochondrial F1FO-ATP synthase of the chlorophycean algae Polytomella sp. can be isolated as a highly stable dimeric complex of 1600kDa. It is composed of eight highly conserved orthodox subunits (α, ß, γ, δ, ε, OSCP, a, and c) and nine subunits (Asa1-9) that are exclusive of chlorophycean algae. The Asa subunits replace those that build up the peripheral stalk and the dimerization domains of the ATP synthase in other organisms. Little is known about the disposition of subunits Asa6, Asa8 and Asa9, that are predicted to have transmembrane stretches and that along with subunit a and a ring of c-subunits, seem to constitute the membrane-embedded Fo domain of the algal ATP synthase. Here, we over-expressed and purified the three Asa hydrophobic subunits and explored their interactions in vitro using a combination of immunochemical techniques, affinity chromatography, and an in vivo yeast-two hybrid assays. The results obtained suggest the following interactions Asa6-Asa6, Asa6-Asa8, Asa6-Asa9, Asa8-Asa8 and Asa8-Asa9. Cross-linking experiments carried out with the intact enzyme corroborated some of these interactions. Based on these results, we propose a model of the disposition of these hydrophobic subunits in the membrane-embedded sector of the algal ATP synthase. We also propose based on sequence analysis and hydrophobicity plots, that the algal subunit a is atypical in as much it lacks the first transmembrane stretch, exhibiting only four hydrophobic, tilted alpha helices.


Assuntos
Proteínas de Algas/metabolismo , Clorófitas/enzimologia , Proteínas de Membrana/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Algas/química , Microscopia Crioeletrônica , Dimerização , Proteínas de Membrana/química , ATPases Mitocondriais Próton-Translocadoras/química , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Mapeamento de Interação de Proteínas , Subunidades Proteicas , Proteínas Recombinantes/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
Methods Mol Biol ; 1593: 273-283, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28389962

RESUMO

The photosynthetic bacterium R. sphaeroides expresses two flagellar systems that are encoded by two complete gene clusters that have distinct phylogenetic origins. The isolation and purification of the Filament-Hook Basal Body (F-HBB) or the Hook Basal Body (HBB) structure is a troublesome task given the complexity of this nano-machine that is composed of multiple loosely bound substructures that can be lost during the isolation and purification procedure. A successful procedure requires adjustments to the standard method established for Salmonella. In this chapter, we describe a detailed protocol to isolate and purify the Fla2 F-HBB and HBB from R. sphaeroides a photosynthetic bacterium that has a complex intracellular membrane system that frequently interferes with isolation of high-quality samples.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Rhodobacter sphaeroides/metabolismo , Corpos Basais/metabolismo , Fotossíntese/fisiologia
13.
J Bacteriol ; 199(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27956523

RESUMO

Rhodobacter sphaeroides is an alphaproteobacterium that has two complete sets of flagellar genes. The fla1 set was acquired by horizontal transfer from an ancestral gammaproteobacterium and is the only set of flagellar genes that is expressed during growth under standard laboratory conditions. The products of these genes assemble a single, subpolar flagellum. In the absence of the Fla1 flagellum, a gain-of-function mutation in the histidine kinase CckA turns on the expression of the fla2 flagellar genes through the response regulator CtrA. The rotation of the Fla1 and Fla2 flagella is controlled by different sets of chemotaxis proteins. Here, we show that the expression of the chemotaxis proteins that control Fla2, along with the expression of the fla2 genes, is coordinated by CtrA, whereas the expression of the chemotaxis genes that control Fla1 is mediated by the master regulators of the Fla1 system. The coordinated expression of the chemosensory proteins with their cognate flagellar genes highlights the relevance of integrating the expression of the horizontally acquired fla1 genes with a chemosensory system independently of the regulatory proteins responsible for the expression of fla2 and its cognate chemosensory system. IMPORTANCE Gene acquisition via horizontal transfer represents a challenge to the recipient organism to adjust its metabolic and genetic networks to incorporate the new material in a way that represents an adaptive advantage. In the case of Rhodobacter sphaeroides, a complete set of flagellar genes was acquired and successfully coordinated with the native flagellar system. Here we show that the expression of the chemosensory proteins that control flagellar rotation is dependent on the master regulators of their corresponding flagellar system, minimizing the use of transcription factors required to express the native and horizontally acquired genes along with their chemotaxis proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia/fisiologia , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/genética , Quimiotaxia/genética , Histidina Quinase/genética , Histidina Quinase/metabolismo , Rhodobacter sphaeroides/genética
17.
J Bacteriol ; 198(13): 1847-56, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27114466

RESUMO

UNLABELLED: SltF was identified previously as an autolysin required for the assembly of flagella in the alphaproteobacteria, but the nature of its peptidoglycan lytic activity remained unknown. Sequence alignment analyses suggest that it could function as either a muramidase, lytic transglycosylase, or ß-N-acetylglucosaminidase. Recombinant SltF from Rhodobacter sphaeroides was purified to apparent homogeneity, and it was demonstrated to function as a lytic transglycosylase based on enzymatic assays involving mass spectrometric analyses. Circular dichroism (CD) analysis determined that it is composed of 83.4% α-structure and 1.48% ß-structure and thus is similar to family 1A lytic transglycosylases. However, alignment of apparent SltF homologs identified in the genome database defined a new subfamily of the family 1 lytic transglycosylases. SltF was demonstrated to be endo-acting, cleaving within chains of peptidoglycan, with optimal activity at pH 7.0. Its activity is modulated by two flagellar rod proteins, FlgB and FlgF: FlgB both stabilizes and stimulates SltF activity, while FlgF inhibits it. Invariant Glu57 was confirmed as the sole catalytic acid/base residue of SltF. IMPORTANCE: The bacterial flagellum is comprised of a basal body, hook, and helical filament, which are connected by a rod structure. With a diameter of approximately 4 nm, the rod is larger than the estimated pore size within the peptidoglycan sacculus, and hence its insertion requires the localized and controlled lysis of this essential cell wall component. In many beta- and gammaproteobacteria, this lysis is catalyzed by the ß-N-acetylglucosaminidase domain of FlgJ. However, FlgJ of the alphaproteobacteria lacks this activity and instead it recruits a separate enzyme, SltF, for this purpose. In this study, we demonstrate that SltF functions as a newly identified class of lytic transglycosylases and that its autolytic activity is uniquely modulated by two rod proteins, FlgB and FlgF.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Rhodobacter sphaeroides/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Flagelos/química , Flagelos/genética , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano Glicosiltransferase/química , Peptidoglicano Glicosiltransferase/genética , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Alinhamento de Sequência
18.
J Bacteriol ; 198(3): 544-52, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26574514

RESUMO

UNLABELLED: The flagellar basal body is a rotary motor that spans the cytoplasmic and outer membranes. The rod is a drive shaft that transmits torque generated by the motor through the hook to the filament that propels the bacterial cell. The assembly and structure of the rod are poorly understood. In a first attempt to characterize this structure in the alphaproteobacterium Rhodobacter sphaeroides, we overexpressed and purified FliE and the four related rod proteins (FlgB, FlgC, FlgF, and FlgG), and we analyzed their ability to form homo-oligomers. We found that highly purified preparations of these proteins formed high-molecular-mass oligomers that tended to dissociate in the presence of NaCl. As predicted by in silico modeling, the four rod proteins share architectural features. Using affinity blotting, we detected the heteromeric interactions between these proteins. In addition, we observed that deletion of the N- and C-terminal regions of FlgF and FlgG severely affected heteromeric but not homomeric interactions. On the basis of our findings, we propose a model of rod assembly in this bacterium. IMPORTANCE: Despite the considerable amount of research on the structure and assembly of other flagellar axial structures that has been conducted, the rod has been barely studied. An analysis of the biochemical characteristics of the flagellar rod components of the Fla1 system of R. sphaeroides is presented in this work. We also analyze the interactions of these proteins with each other and with their neighbors, and we propose a model for the order in which they are assembled.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Rhodobacter sphaeroides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano/genética , Dados de Sequência Molecular , Conformação Proteica
19.
J Bacteriol ; 197(17): 2859-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26124240

RESUMO

UNLABELLED: Rhodobacter sphaeroides is a free-living alphaproteobacterium that contains two clusters of functional flagellar genes in its genome: one acquired by horizontal gene transfer (fla1) and one that is endogenous (fla2). We have shown that the Fla2 system is normally quiescent and under certain conditions produces polar flagella, while the Fla1 system is always active and produces a single flagellum at a nonpolar position. In this work we purified and characterized the structure and analyzed the composition of the Fla2 flagellum. The number of polar filaments per cell is 4.6 on average. By comparison with the Fla1 flagellum, the prominent features of the ultra structure of the Fla2 HBB are the absence of an H ring, thick and long hooks, and a smoother zone at the hook-filament junction. The Fla2 helical filaments have a pitch of 2.64 µm and a diameter of 1.4 µm, which are smaller than those of the Fla1 filaments. Fla2 filaments undergo polymorphic transitions in vitro and showed two polymorphs: curly (right-handed) and coiled. However, in vivo in free-swimming cells, we observed only a bundle of filaments, which should probably be left-handed. Together, our results indicate that Fla2 cell produces multiple right-handed polar flagella, which are not conventional but exceptional. IMPORTANCE: R. sphaeroides possesses two functional sets of flagellar genes. The fla1 genes are normally expressed in the laboratory and were acquired by horizontal transfer. The fla2 genes are endogenous and are expressed in a Fla1(-) mutant grown phototrophically and in the absence of organic acids. The Fla1 system produces a single lateral or subpolar flagellum, and the Fla2 system produces multiple polar flagella. The two kinds of flagella are never expressed simultaneously, and both are used for swimming in liquid media. The two sets of genes are certainly ready for responding to specific environmental conditions. The characterization of the Fla2 system will help us to understand its role in the physiology of this microorganism.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/ultraestrutura , Flagelina/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Rhodobacter sphaeroides/ultraestrutura , Proteínas de Bactérias/genética , Flagelina/metabolismo , Polimorfismo Genético , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
20.
Can J Microbiol ; 61(3): 183-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639364

RESUMO

In this study, we show the induction of lateral flagella by the action of the sodium channel blocker phenamil, in the marine bacterium Vibrio shilonii, a coral pathogen that causes bleaching. We analyzed the growth and morphology of cells treated with phenamil. A time course analysis showed that after 30 min of exposure to the sodium channel blocker, lateral flagella were present and could be detected by electron microscopy. Detection of the mRNA of the master regulator (lafK) and lateral flagellin (lafA) by RT-PCR confirmed the expression of lateral flagellar genes. We show the simultaneous isolation of polar and, for the first time, lateral flagellar hook-basal bodies. This allowed us to compare the dimensions and morphological characteristics of the 2 structures.


Assuntos
Flagelos/metabolismo , Sódio/metabolismo , Vibrio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Flagelos/genética , Flagelina/genética , Flagelina/metabolismo , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...