Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898248

RESUMO

The glucose analogue 2-deoxyglucose (2DG) has frequently been used as a tool to study cellular glucose uptake and to inhibit glycolysis. Exposure of primary cultured astrocytes to 2DG caused a time- and concentration-dependent cellular accumulation of 2-deoxyglucose-6-phosphate (2DG6P) that was accompanied by a rapid initial decline in cellular ATP content. Inhibitors of mitochondrial respiration as well as inhibitors of mitochondrial uptake of pyruvate and activated fatty acids accelerated the ATP loss, demonstrating that mitochondrial ATP regeneration contributes to the partial maintenance of the ATP content in 2DG-treated astrocytes. After a 30 min exposure to 10 mM 2DG the specific content of cellular 2DG6P had accumulated to around 150 nmol/mg, while cellular ATP was lowered by 50% to around 16 nmol/mg. Following such a 2DG6P-loading of astrocytes, glycolytic lactate production from applied glucose was severely impaired during the initial 60 min of incubation, but was reestablished during longer incubation concomitant with a loss in cellular 2DG6P content. In contrast to glycolysis, the glucose-dependent NADPH regeneration via the pentose phosphate pathway (PPP) was only weakly affected in 2DG6P-loaded astrocytes and in cells that were coincubated with glucose in the presence of an excess of 2DG. Additionally, in the presence of 2DG PPP-dependent WST1 reduction was found to have doubled compared to hexose-free control incubations, indicating that cellular 2DG6P can serve as substrate for NADPH regeneration by the astrocytic PPP. The data presented provide new insights on the metabolic consequences of a 2DG exposure on the energy and glucose metabolism of astrocytes and demonstrate the reversibility of the inhibitory potential of a 2DG-treatment on the glucose metabolism of cultured astrocytes.

2.
Neurochem Res ; 49(5): 1188-1199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341839

RESUMO

Brain astrocytes are well known for their broad metabolic potential. After glucose deprivation, cultured primary astrocytes maintain a high cellular ATP content for many hours by mobilizing endogenous substrates, but within 24 h the specific cellular ATP content was lowered to around 30% of the initial ATP content. This experimental setting was used to test for the potential of various exogenous substrates to prevent a loss in cellular ATP in glucose deprived astrocytes. The presence of various extracellular monocarboxylates, purine nucleosides or fatty acids prevented the loss of ATP from glucose-deprived astrocytes. Of the 20 proteinogenic amino acids, only alanine, aspartate, glutamate, glutamine, lysine or proline maintained high ATP levels in starved astrocytes. Among these amino acids, proline was found to be the most potent one to prevent the ATP loss. The astrocytic consumption of proline as well as the ability of proline to maintain a high cellular ATP content was prevented in a concentration-dependent manner by the proline dehydrogenase inhibitor tetrahydro-2-furoic acid. Analysis of the concentration-dependencies obtained by considering the different carbon content of the applied substrates revealed that fatty acids and proline are more potent than glucose and monocarboxylates as exogenous substrates to prevent ATP depletion in glucose-deprived astrocytes. These data demonstrate that cultured astrocytes can utilise a wide range of extracellular substrates as fuels to support mitochondrial ATP regeneration and identify proline as potent exogenous substrate for the energy metabolism of starved astrocytes.


Assuntos
Astrócitos , Glucose , Ratos , Animais , Glucose/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Prolina , Trifosfato de Adenosina/metabolismo , Ácidos Graxos/metabolismo
3.
Neurochem Res ; 49(5): 1331-1346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376749

RESUMO

Astrocyte-derived pyruvate is considered to have neuroprotective functions. In order to investigate the processes that are involved in astrocytic pyruvate release, we used primary rat astrocyte cultures as model system. Depending on the incubation conditions and medium composition, astrocyte cultures established extracellular steady state pyruvate concentrations in the range between 150 µM and 300 µM. During incubations for up to 2 weeks in DMEM culture medium, the extracellular pyruvate concentration remained almost constant for days, while the extracellular lactate concentration increased continuously during the incubation into the millimolar concentration range as long as glucose was present. In an amino acid-free incubation buffer, glucose-fed astrocytes released pyruvate with an initial rate of around 60 nmol/(h × mg) and after around 5 h an almost constant extracellular pyruvate concentration was established that was maintained for several hours. Extracellular pyruvate accumulation was also observed, if glucose had been replaced by mannose, fructose, lactate or alanine. Glucose-fed astrocyte cultures established similar extracellular steady state concentrations of pyruvate by releasing pyruvate into pyruvate-free media or by consuming excess of extracellular pyruvate. Inhibition of the monocarboxylate transporter MCT1 by AR-C155858 lowered extracellular pyruvate accumulation, while inhibition of mitochondrial pyruvate uptake by UK5099 increased the extracellular pyruvate concentration. Finally, the presence of the uncoupler BAM15 or of the respiratory chain inhibitor antimycin A almost completely abolished extracellular pyruvate accumulation. The data presented demonstrate that cultured astrocytes establish a transient extracellular steady state concentration of pyruvate which is strongly affected by modulation of the mitochondrial pyruvate metabolism.


Assuntos
Astrócitos , Ácido Pirúvico , Ratos , Animais , Astrócitos/metabolismo , Ácido Pirúvico/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Células Cultivadas
4.
Neurochem Res ; 49(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603214

RESUMO

The Multidrug Resistance Protein 1 (Mrp1) is an ATP-dependent efflux transporter and a major facilitator of drug resistance in mammalian cells during cancer and HIV therapy. In brain, Mrp1-mediated GSH export from astrocytes is the first step in the supply of GSH precursors to neurons. To reveal potential mechanisms underlying the drug-induced modulation of Mrp1-mediated transport processes, we investigated the effects of the antiviral drug ritonavir on cultured rat primary astrocytes. Ritonavir strongly stimulated the Mrp1-mediated export of glutathione (GSH) by decreasing the Km value from 200 nmol/mg to 28 nmol/mg. In contrast, ritonavir decreased the export of the other Mrp1 substrates glutathione disulfide (GSSG) and bimane-glutathione. To give explanation for these apparently contradictory observations, we performed in silico docking analysis and molecular dynamics simulations using a homology model of rat Mrp1 to predict the binding modes of ritonavir, GSH and GSSG to Mrp1. The results suggest that ritonavir binds to the hydrophilic part of the bipartite binding site of Mrp1 and thereby differently affects the binding and transport of the Mrp1 substrates. These new insights into the modulation of Mrp1-mediated export processes by ritonavir provide a new model to better understand GSH-dependent detoxification processes in brain cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Astrócitos , Ratos , Animais , Dissulfeto de Glutationa/metabolismo , Astrócitos/metabolismo , Ritonavir/farmacologia , Ritonavir/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Células Cultivadas , Glutationa/metabolismo , Transporte Biológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mamíferos/metabolismo
5.
Neurochem Res ; 49(2): 402-414, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855866

RESUMO

Adenosine triphosphate (ATP) is the main energy currency of all cells, while creatine phosphate (CrP) is considered as a buffer of high energy-bond phosphate that facilitates rapid regeneration of ATP from adenosine diphosphate (ADP). Astrocyte-rich primary cultures contain ATP, ADP and adenosine monophosphate (AMP) in average specific contents of 36.0 ± 6.4 nmol/mg, 2.9 ± 2.1 nmol/mg and 1.7 ± 2.1 nmol/mg, respectively, which establish an adenylate energy charge of 0.92 ± 0.04. The average specific cellular CrP level was found to be 25.9 ± 10.8 nmol/mg and the CrP/ATP ratio was 0.74 ± 0.28. The specific cellular CrP content, but not the ATP content, declined with the age of the culture. Absence of fetal calf serum for 24 h caused a partial loss in the cellular contents of both CrP and ATP, while application of creatine for 24 h doubled the cellular CrP content and the CrP/ATP ratio, but did not affect ATP levels. In glucose-deprived astrocytes, the high cellular ATP and CrP contents were rapidly depleted within minutes after application of the glycolysis inhibitor 2-deoxyglucose and the respiratory chain inhibitor antimycin A. For those conditions, the decline in CrP levels always preceded that of ATP contents. In contrast, incubation of glucose-fed astrocytes for up to 30 min with antimycin A had little effect on the high cellular ATP content, while the CrP level was significantly lowered. These data demonstrate the importance of cellular CrP for maintaining a high cellular ATP content in astrocytes during episodes of impaired ATP regeneration.


Assuntos
Trifosfato de Adenosina , Astrócitos , Fosfocreatina/metabolismo , Astrócitos/metabolismo , Antimicina A/farmacologia , Trifosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Creatina/metabolismo , Glucose , Difosfato de Adenosina/metabolismo , Fosfatos , Metabolismo Energético
6.
Neurotox Res ; 42(1): 6, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133743

RESUMO

Iron oxide nanoparticles (IONPs) have come into focus for their use in medical applications although possible health risks for humans, especially in terms of brain functions, have not yet been fully clarified. The present study investigates the effects of IONPs on neurobehavioural functions in rats. For this purpose, we infused dimercaptosuccinic acid-coated IONPs into the medial prefrontal cortex (mPFC) and caudate putamen (CPu). Saline (VEH) and ferric ammonium citrate (FAC) were administered as controls. One- and 4-week post-surgery mPFC-infused animals were tested for their working memory performance in the delayed alternation T-maze task and in the open field (OF) for motor activity, and CPu-infused rats were tested for their motor activity in the OF. After completion of the experiments, the brains were examined histologically and immunohistochemically. We did not observe any behavioural or structural abnormalities in the rats after administration of IONPs in the mPFC and the CPu. In contrast, administration of FAC into the CPu resulted in decreased motor activity and increased the number of microglia in the mPFC. Perls' Prussian blue staining revealed that FAC- and IONP-treated rats had more iron-containing ramified cells than VEH-treated rats, indicating iron uptake by microglia. Our results demonstrate that local infusions of IONPs into selected brain regions have no adverse impact on locomotor behaviour and working memory.


Assuntos
Memória de Curto Prazo , Putamen , Humanos , Ratos , Animais , Córtex Pré-Frontal , Ferro , Atividade Motora , Nanopartículas Magnéticas de Óxido de Ferro
7.
Sci Rep ; 13(1): 22394, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104175

RESUMO

NADH plays a crucial role in many enzymatically catalysed reactions. Due to the high costs of NADH a regeneration mechanism of this cofactor can enlarge the applications of enzymatic reactions dramatically. This paper gives a thorough system analysis of the mediated electrochemical regeneration of active NADH using cyclic voltammograms and potentiostatic measurements with varying pH, electrode potential, and electrolyte solution, highlighting the system's limiting conditions, elucidating optimal working parameters for the electrochemical reduction of NAD+, and bringing new insight on the oxidation of inactive reduction products. Using [Cp*Rh(bpy)Cl]+ as an electron mediator dramatically increases the percentage of enzymatically active electrochemically reduced NADH from 15% (direct) to 99% (mediated) with a faradaic efficiency of up to 86%. Furthermore, investigations of the catalytic mechanisms of [Cp*Rh(bpy)Cl]+ clarifies the necessary conditions for its functioning and questions the proposed reaction mechanism by two-step reduction where first the mediator is reduced and then brought in contact with NAD+.

8.
Neurochem Res ; 48(10): 3177-3189, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394677

RESUMO

Glucose-6-phosphate dehydrogenase (G6PDH) catalyses the rate limiting first step of the oxidative part of the pentose phosphate pathway (PPP), which has a crucial function in providing NADPH for antioxidative defence and reductive biosyntheses. To explore the potential of the new G6PDH inhibitor G6PDi-1 to affect astrocytic metabolism, we investigated the consequences of an application of G6PDi-1 to cultured primary rat astrocytes. G6PDi-1 efficiently inhibited G6PDH activity in lysates of astrocyte cultures. Half-maximal inhibition was observed for 100 nM G6PDi-1, while presence of almost 10 µM of the frequently used G6PDH inhibitor dehydroepiandrosterone was needed to inhibit G6PDH in cell lysates by 50%. Application of G6PDi-1 in concentrations of up to 100 µM to astrocytes in culture for up to 6 h did not affect cell viability nor cellular glucose consumption, lactate production, basal glutathione (GSH) export or the high basal cellular ratio of GSH to glutathione disulfide (GSSG). In contrast, G6PDi-1 drastically affected astrocytic pathways that depend on the PPP-mediated supply of NADPH, such as the NAD(P)H quinone oxidoreductase (NQO1)-mediated WST1 reduction and the glutathione reductase-mediated regeneration of GSH from GSSG. These metabolic pathways were lowered by G6PDi-1 in a concentration-dependent manner in viable astrocytes with half-maximal effects observed for concentrations between 3 and 6 µM. The data presented demonstrate that G6PDi-1 efficiently inhibits the activity of astrocytic G6PDH and impairs specifically those metabolic processes that depend on the PPP-mediated regeneration of NADPH in cultured astrocytes.


Assuntos
Astrócitos , Via de Pentose Fosfato , Ratos , Animais , Astrócitos/metabolismo , Via de Pentose Fosfato/fisiologia , Dissulfeto de Glutationa/metabolismo , Glucosefosfato Desidrogenase/metabolismo , NADP/metabolismo , Glutationa/metabolismo , Células Cultivadas
9.
Neurochem Res ; 48(7): 2241-2252, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36914795

RESUMO

Adenosine triphosphate (ATP) is the central energy currency of all cells. Cultured primary rat astrocytes contain a specific cellular ATP content of 27.9 ± 4.7 nmol/mg. During incubation in a glucose- and amino acid-free incubation buffer, this high cellular ATP content was maintained for at least 6 h, while within 24 h the levels of ATP declined to around 30% of the initial value without compromising cell viability. In contrast, cells exposed to 1 mM and 5 mM glucose maintained the initial high cellular ATP content for 24 and 72 h, respectively. The loss in cellular ATP content observed during a 24 h glucose-deprivation was fully prevented by the presence of glucose, fructose or mannose as well as by the mitochondrial substrates lactate, pyruvate, ß-hydroxybutyrate or acetate. The high initial specific ATP content in glucose-starved astrocytes, was almost completely abolished within 30 min after application of the respiratory chain inhibitor antimycin A or the mitochondrial uncoupler BAM-15, while these inhibitors lowered in glucose-fed cells the ATP content only to 60% (BAM-15) and 40% (antimycin A) within 5 h. Inhibition of the mitochondrial pyruvate carrier by UK5099 alone or of mitochondrial fatty acid uptake by etomoxir alone hardly affected the high ATP content of glucose-deprived astrocytes during an incubation for 8 h, while the co-application of both inhibitors depleted cellular ATP levels almost completely within 5 h. These data underline the importance of mitochondrial metabolism for the ATP regeneration of astrocytes and demonstrate that the mitochondrial oxidation of pyruvate and fatty acids strongly contributes to the maintenance of a high ATP concentration in glucose-deprived astrocytes.


Assuntos
Trifosfato de Adenosina , Astrócitos , Ratos , Animais , Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Antimicina A , Glucose/metabolismo , Células Cultivadas , Ácido Láctico/metabolismo , Piruvatos
10.
Neurochem Res ; 48(7): 2148-2160, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811754

RESUMO

Electron cycler-mediated extracellular reduction of the water-soluble tetrazolium salt 1 (WST1) is frequently used as tool for the determination of cell viability. We have adapted this method to monitor by determining the extracellular WST1 formazan accumulation the cellular redox metabolism of cultured primary astrocytes via the NAD(P)H-dependent reduction of the electron cycler ß-lapachone by cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1). Cultured astrocytes that had been exposed to ß-lapachone in concentrations of up to 3 µM remained viable and showed an almost linear extracellular accumulation of WST1 formazan for the first 60 min, while higher concentrations of ß-lapachone caused oxidative stress and impaired cell metabolism. ß-lapachone-mediated WST1 reduction was inhibited by the NQO1 inhibitors ES936 and dicoumarol in a concentration-dependent manner, with half-maximal inhibition observed at inhibitor concentrations of about 0.3 µM. ß-lapachone-mediated WST1 reduction depended strongly on glucose availability, while mitochondrial substrates such as lactate, pyruvate or ketone bodies allowed only residual ß-lapachone-mediated WST1 reduction. Accordingly, the mitochondrial respiratory chain inhibitors antimycin A and rotenone hardly affected astrocytic WST1 reduction. Both NADH and NADPH are known to supply electrons for reactions catalysed by cytosolic NQO1. Around 60% of the glucose-dependent ß-lapachone-mediated WST1 reduction was prevented by the presence of the glucose-6-phosphate dehydrogenase inhibitor G6PDi-1, while the glyceraldehyde-3-phosphate dehydrogenase inhibitor iodoacetate had only little inhibitory potential. These data suggest that pentose phosphate pathway-generated NADPH, and not glycolysis-derived NADH, is the preferred electron source for cytosolic NQO1-catalysed reductions in cultured astrocytes.


Assuntos
NAD , Naftoquinonas , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Astrócitos/metabolismo , Água , Formazans/metabolismo , NADP/metabolismo , Naftoquinonas/farmacologia , Oxirredução , Glucose/metabolismo
11.
Neurochem Res ; 48(5): 1438-1454, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36495387

RESUMO

Brain astrocytes are considered as glycolytic cell type, but these cells also produce ATP via mitochondrial oxidative phosphorylation. Exposure of cultured primary astrocytes in a glucose-free medium to extracellular substrates that are known to be metabolised by mitochondrial pathways, including pyruvate, lactate, beta-hydroxybutyrate, alanine and acetate, revealed that among the substrates investigated extracellular pyruvate was most efficiently consumed by astrocytes. Extracellular pyruvate was consumed by the cells almost proportional to time over hours in a concentration-dependent manner with apparent Michaelis-Menten kinetics [Km = 0.6 ± 0.1 mM, Vmax = 5.1 ± 0.8 nmol/(min × mg protein)]. The astrocytic consumption of pyruvate was strongly impaired in the presence of the monocarboxylate transporter 1 (MCT1) inhibitor AR-C155858 or by application of a 10-times excess of the MCT1 substrates lactate or beta-hydroxybutyrate. Pyruvate consumption by viable astrocytes was inhibited in the presence of UK5099, an inhibitor of the mitochondrial pyruvate carrier, or after application of the respiratory chain inhibitor antimycin A. In contrast, the mitochondrial uncoupler BAM15 strongly accelerated cellular pyruvate consumption. Lactate and alanine accounted after 3 h of incubation with pyruvate for around 60% and 10%, respectively, of the pyruvate consumed by the cells. These results demonstrate that consumption of extracellular pyruvate by astrocytes involves uptake via MCT1 and that the velocity of pyruvate consumption is strongly modified by substances that affect the entry of pyruvate into mitochondria or the activity of mitochondrial respiration.


Assuntos
Astrócitos , Ácido Pirúvico , Ratos , Animais , Ácido Pirúvico/metabolismo , Astrócitos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Proteínas de Transporte/metabolismo , Alanina/metabolismo , Lactatos/metabolismo , Encéfalo/metabolismo
12.
Sci Rep ; 12(1): 16380, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180530

RESUMO

Electrochemical NAD+ reduction is a promising method to regenerate NADH for enzymatic reactions. Many different electrocatalysts have been tested in the search for high yields of the 1,4-isomer of NADH, the active NADH, but aside from electrode material, other system parameters such as pH, electrode potential and educt concentration also play a role in NADH regeneration. The effect of these last three parameters and the mechanisms behind their influence on NADH regeneration was systematically studied and presented in this paper. With percentages of active NADH ranging from 10 to 70% and faradaic efficiencies between 1 and 30%, it is clear that all three system parameters drastically affect the reaction outcome. As a proof of principle, the NAD+ reduction in the presence of pyruvate and lactate dehydrogenase was performed. It could be shown that the electrochemical NADH regeneration can also be done successfully in parallel to enzymatically usage of the regenerated cofactor.


Assuntos
NAD , Ácido Pirúvico , Eletrodos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase , NAD/metabolismo , Oxirredução , Regeneração
13.
Neurotox Res ; 39(6): 2056-2071, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34705254

RESUMO

Iron oxide nanoparticles (IONPs) are used for diverse medical approaches, although the potential health risks, for example adverse effects on brain functions, are not fully clarified. Several in vitro studies demonstrated that the different types of brain cells are able to accumulate IONPs and reported a toxic potential for IONPs, at least for microglia. However, little information is available for the in vivo effects of direct application of IONPs into the brain over time. Therefore, we examined the cellular responses and the distribution of iron in the rat brain at different time points after local infusion of IONPs into selected brain areas. Dispersed IONPs or an equivalent amount of low molecular weight iron complex ferric ammonium citrate or vehicle were infused into the medial prefrontal cortex (mPFC), the caudate putamen (CPu), or the dorsal hippocampus (dHip). Rats were sacrificed 1 day, 1 week, or 4 weeks post-infusion and brain sections were histologically examined for treatment effects on astrocytes, microglia, and neurons. Glial scar formation was observed in the mPFC and CPu 1 week post-infusion independent of the substance and probably resulted from the infusion procedure. Compared to vehicle, IONPs did not cause any obvious additional adverse effects and no additional tissue damage, while the infusion of ferric ammonium citrate enhanced neurodegeneration in the mPFC. Results of iron staining indicate that IONPs were mainly accumulated in microglia. Our results demonstrate that local infusions of IONPs in selected brain areas do not cause any additional adverse effects or neurodegeneration compared to vehicle.


Assuntos
Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Biochem Biophys Res Commun ; 568: 158-166, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217973

RESUMO

The lactate dehydrogenase isoform A (LDHA) is a key metabolic enzyme that preferentially catalyzes the conversion of pyruvate to lactate. Whereas LDHA is highly expressed in many tissues, its expression is turned off in the differentiated adult ß-cell within the pancreatic islets. The repression of LDHA under normal physiological condition and its inappropriate upregulation under a diabetogenic environment is well-documented in rodent islets/ß-cells but little is known about LDHA expression in human islet cells and whether its abundance is altered under diabetic conditions. Analysis of public single-cell RNA-seq (sc-RNA seq) data as well as cell type-specific immunolabeling of human pancreatic islets showed that LDHA was mainly localized in human α-cells while it is expressed at a very low level in ß-cells. Furthermore, LDHA, both at mRNA and protein, as well as lactate production is upregulated in human pancreatic islets exposed to chronic high glucose treatment. Microscopic analysis of stressed human islets and autopsy pancreases from individuals with type 2 diabetes (T2D) showed LDHA upregulation mainly in human α-cells. Pharmacological inhibition of LDHA in isolated human islets enhanced insulin secretion under physiological conditions but did not significantly correct the deregulated secretion of insulin or glucagon under diabetic conditions.


Assuntos
Diabetes Mellitus Tipo 2/genética , Células Secretoras de Glucagon/metabolismo , L-Lactato Desidrogenase/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/citologia , Glucose/metabolismo , Humanos , Secreção de Insulina , L-Lactato Desidrogenase/análise , L-Lactato Desidrogenase/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , Regulação para Cima
15.
Neurochem Res ; 46(1): 88-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31902045

RESUMO

The reduction of water-soluble tetrazolium salts (WSTs) is frequently used to determine the metabolic integrity and the viability of cultured cells. Recently, we have reported that the electron cycler menadione can efficiently connect intracellular oxidation reactions in cultured astrocytes with the extracellular reduction of WST1 and that this menadione cycling reaction involves an enzyme. The enzymatic reaction involved in the menadione-dependent WST1 reduction was found strongly enriched in the cytosolic fraction of cultured astrocytes and is able to efficiently use both NADH and NADPH as electron donors. In addition, the reaction was highly sensitive towards dicoumarol with Kic values in the low nanomolar range, suggesting that the NAD(P)H:quinone oxidoreductase 1 (NQO1) catalyzes the menadione-dependent WST1 reduction in astrocytes. Also, in intact astrocytes, dicoumarol inhibited the menadione-dependent WST1 reduction in a concentration-dependent manner with half-maximal inhibition observed at around 50 nM. Moreover, the menadione-dependent WST1 reduction by viable astrocytes was strongly affected by the availability of glucose. In the absence of glucose only residual WST1 reduction was observed, while a concentration-dependent increase in WST1 reduction was found during a 30 min incubation with maximal WST1 reduction already determined in the presence of 0.5 mM glucose. Mannose could fully replace glucose as substrate for astrocytic WST1 reduction, while other hexoses, lactate and the mitochondrial substrate ß-hydroxybutyrate failed to provide electrons for the cell-dependent WST1 reduction. These results demonstrate that the menadione-mediated WST1 reduction involves cytosolic NQO1 activity and that this process is strongly affected by the availability of glucose as metabolic substrate.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Sais de Tetrazólio/metabolismo , Vitamina K 3/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Dicumarol/farmacologia , Inibidores Enzimáticos/farmacologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Oxirredução , Ratos Wistar , Sais de Tetrazólio/química
16.
J Med Chem ; 63(21): 12614-12622, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931274

RESUMO

The synthesis, characterization, biological activity, and toxicology of sila-ibuprofen, a silicon derivative of the most common nonsteroidal anti-inflammatory drug, is reported. The key improvements compared with ibuprofen are a four times higher solubility in physiological media and a lower melting enthalpy, which are attributed to the carbon-silicon switch. The improved solubility is of interest for postsurgical intravenous administration. A potential for pain relief is rationalized via inhibition experiments of cyclooxygenases I and II (COX-I and COX-II) as well as via a set of newly developed methods that combine molecular dynamics, quantum chemistry, and quantum crystallography. The binding affinity of sila-ibuprofen to COX-I and COX-II is quantified in terms of London dispersion and electrostatic interactions in the active receptor site. This study not only shows the potential of sila-ibuprofen for medicinal application but also improves our understanding of the mechanism of action of the inhibition process.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Ibuprofeno/química , Silício/química , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Sítios de Ligação , Carbono/química , Domínio Catalítico , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Humanos , Ibuprofeno/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Teoria Quântica , Eletricidade Estática
17.
Neurochem Res ; 45(10): 2442-2455, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32789798

RESUMO

ß-lapachone (ß-lap) is reduced in tumor cells by the enzyme NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1) to a labile hydroquinone which spontaneously reoxidises to ß-lap, thereby generating reactive oxygen species (ROS) and oxidative stress. To test for the consequences of an acute exposure of brain cells to ß-lap, cultured primary rat astrocytes were incubated with ß-lap for up to 4 h. The presence of ß-lap in concentrations of up to 10 µM had no detectable adverse consequences, while higher concentrations of ß-lap compromised the cell viability and the metabolism of astrocytes in a concentration- and time-dependent manner with half-maximal effects observed for around 15 µM ß-lap after a 4 h incubation. Exposure of astrocytes to ß-lap caused already within 5 min a severe increase in the cellular production of ROS as well as a rapid oxidation of glutathione (GSH) to glutathione disulfide (GSSG). The transient cellular accumulation of GSSG was followed by GSSG export. The ß-lap-induced ROS production and GSSG accumulation were completely prevented in the presence of the NQO1 inhibitor dicoumarol. In addition, application of dicoumarol to ß-lap-exposed astrocytes caused rapid regeneration of the normal high cellular GSH to GSSG ratio. These results demonstrate that application of ß-lap to cultured astrocytes causes acute oxidative stress that depends on the activity of NQO1. The sequential application of ß-lap and dicoumarol to rapidly induce and terminate oxidative stress, respectively, is a suitable experimental paradigm to study consequences of a defined period of acute oxidative stress in NQO1-expressing cells.


Assuntos
Astrócitos/efeitos dos fármacos , Dicumarol/farmacologia , Inibidores Enzimáticos/farmacologia , Naftoquinonas/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Glutationa/química , Glutationa/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Oxirredução , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
18.
Neurochem Res ; 45(4): 809-824, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997104

RESUMO

Copper oxide nanoparticles (CuO-NPs) are well known for their cytotoxicity which in part has been attributed to the release of copper ions from CuO-NPs. As iron-doping has been reported to reduce the susceptibility of CuO-NPs to dissolution, we have compared pure CuO-NPs and CuO-NPs that had been doped with 10% iron (CuO-Fe-NPs) for copper release and for their toxic potential on C6 glioma cells. Physicochemical characterization revealed that dimercaptosuccinate (DMSA)-coated CuO-NPs and CuO-Fe-NPs did not differ in their size or zeta potential. However, the redox activity and liberation of copper ions from CuO-Fe-NPs was substantially slower compared to that from CuO-NPs, as demonstrated by cyclic voltammetry and by the photometric quantification of the copper ion-bathocuproine complex, respectively. Exposure of C6 cells to these NPs caused an almost identical cellular copper accumulation and each of the two types of NPs induced ROS production and cell toxicity. However, the time- and concentration-dependent loss in cell viability was more severe for cells that had been treated with CuO-NPs compared to cells exposed to CuO-Fe-NPs. Copper accumulation and toxicity after exposure to either CuO-NPs or CuO-Fe-NPs was prevented in the presence of copper chelators, while neutralization of the lysosomal pH by bafilomycin A1 prevented toxicity without affecting cellular copper accumulation or ROS production. These data demonstrate that iron-doping does not affect cellular accumulation of CuO-NPs and suggests that the intracellular liberation of copper ions from CuO-NPs is slowed by the iron doping, which in turn lowers the cell toxic potential of iron-doped CuO-NPs.


Assuntos
Cobre/toxicidade , Ferro/química , Nanopartículas Metálicas/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/metabolismo , Nanopartículas Metálicas/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
Neurochem Res ; 44(9): 2156-2169, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31414344

RESUMO

Copper oxide nanoparticles (CuO-NPs) dispersions are known for their high cell toxic potential but contaminating copper ions in such dispersions are a major hurdle in the investigation of specific nanoparticle-mediated toxicity. In order to distinguish between the adverse effects exhibited by CuO-NPs and/or by contaminating ionic copper, the membrane-impermeable copper chelator bathocuproine disulfonate (BCS) was added in a low molar ratio (20% of the total copper applied) in order to chelate the copper ions that had been released extracellularly from the CuO-NPs before or during the incubation. Physicochemical characterization of synthesized CuO-NPs revealed that the presence of this low concentration of BCS did not alter the size or zeta potential of the CuO-NPs. Application of CuO-NPs to C6 glioma cells and primary astrocytes induced a concentration- and temperature-dependent copper accumulation which was accompanied by a severe loss in cell viability. The adverse consequences of the CuO-NP application were not affected by the presence of 20% BCS, while the copper accumulation and cell toxicity observed after application of ionic copper were significantly lowered in the presence of BCS. These results demonstrate that for the experimental conditions applied the adverse consequences of an exposure of cultured glial cells to dispersions of CuO-NPs are mediated by accumulated NPs and not caused by the uptake of contaminating copper ions.


Assuntos
Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Neuroglia/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quelantes/química , Cobre/química , Fenantrolinas/química , Ratos , Succímero/química
20.
Neurochem Res ; 44(10): 2288-2300, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30788754

RESUMO

Brain astrocytes are considered to be highly glycolytic, but these cells also produce ATP via mitochondrial oxidative phosphorylation. To investigate how a metabolic depletion of glucose will affect the metabolism of astrocytes, we applied glucose at an initial concentration of 2 mM to cultured primary astrocytes and monitored the cell viability and various metabolic parameters during an incubation for up to 2 weeks. Already within 2 days of incubation the cells had completely consumed the applied glucose and lactate had accumulated in the medium to a concentration of around 3 mM. During the subsequent 10 days of incubation, the cell viability was not compromised while the extracellular lactate concentration declined to values of around 0.2 mM, before the cell viability was compromised. Application of known inhibitors of mitochondrial metabolism strongly accelerated glucose consumption and initial lactate production, while the lactate consumption was completely (antimycin A or 8-hydroxy efavirenz) and partially (efavirenz, metformin or tyrphostin 23) inhibited which caused rapid and delayed cell toxicity, respectively. The switch from glycolytic glucose metabolism to mitochondrial metabolism during the incubation was neither accompanied by alterations in the specific cytosolic lactate dehydrogenase activity or in the WST1 reduction capacity nor in the mitochondrial citrate synthase activity, but a cellular redistribution of mitochondria from a perinuclear to a more spread cytoplasmic localization was observed during the lactate consumption phase. These results demonstrate that cultured astrocytes survive a metabolism-induced glucose depletion very well by consuming lactate as fuel for mitochondrial ATP generation.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...