Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(7): 1218-1228, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963334

RESUMO

Abrin and ricin are toxic proteins produced by plants. Both proteins are composed of two subunits, an A-chain and a B-chain. The A-chain is responsible for the enzymatic activity, which causes toxicity. The B-chain binds to glycoproteins on the cell surface to direct the A-chain to its target. Both toxins depurinate 28S rRNA, making it impossible to differentiate these toxins based on only their enzymatic activity. We developed an analytical workflow for both ricin and abrin using a single method and sample. We have developed a novel affinity enrichment technique based on the ability of the B-chain to bind a glycoprotein, asialofetuin. After the toxin is extracted with asialofetuin-coated magnetic beads, an RNA substrate is added. Then, depurination is detected by a benchtop matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer to determine the presence or absence of an active toxin. Next, the beads are subjected to tryptic digest. Toxin fingerprinting is done on a benchtop MALDI-TOF MS. We validated the assay through sensitivity and specificity studies and determined the limit of detection for each toxin as nanogram level for enzymatic activity and µg level for toxin fingerprinting. We examined potential cross-reactivity from proteins that are near neighbors of the toxins and examined potential false results in the presence of white powders.


Assuntos
Abrina , Ricina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ricina/análise , Ricina/metabolismo , Ricina/química , Abrina/análise , Abrina/metabolismo , Abrina/química
2.
Molecules ; 25(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630496

RESUMO

Here, we report the syntheses of two pentamethine cyanine dyes containing quinolinium rings and substituted with either hydrogen (3) or bromine (4) at the meso carbon. The electron withdrawing bromine atom stabilizes dye 4 in aqueous buffer, allowing complex formation to occur between the dye and double-helical DNA. UV-visible, CD, and fluorescence spectra recorded at low DNA concentrations suggest that dye 4 initially binds to the DNA as a high-order aggregate. As the ratio of DNA to dye is increased, the aggregate is converted to monomeric and other low-order dye forms that interact with DNA in a non-intercalative fashion. The brominated dye 4 is relatively unreactive in the dark, but, under 707-759 nm illumination, generates hydroxyl radicals that cleave DNA in high yield (pH 7.0, 22 °C). Dye 4 is also taken up by ES2 ovarian carcinoma cells, where it is non-toxic under dark conditions. Upon irradiation of the ES2 cells at 694 nm, the brominated cyanine reduces cell viability from 100 ± 10% to 14 ± 1%. Our results suggest that 2-quinolinium-based carbocyanine dyes equipped with stabilizing electron withdrawing groups may have the potential to serve as sensitizing agents in long-wavelength phototherapeutic applications.


Assuntos
Carbocianinas/química , Clivagem do DNA , DNA de Neoplasias/química , Corantes Fluorescentes/química , Neoplasias Ovarianas/metabolismo , Fotoquímica , Compostos de Quinolínio/química , Apoptose , Proliferação de Células , Feminino , Fluorescência , Humanos , Neoplasias Ovarianas/patologia , Espectroscopia de Luz Próxima ao Infravermelho , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...