Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 44(11): 3834-60, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25954773

RESUMO

Sulfoxides are capable of forming stable complexes with transition metals and there have been many comprehensive studies into their binding properties. However, the use of sulfoxides, particularly chiral sulfoxides, as ligands in transition metal catalysis is rather less well developed. This review aims to describe these catalytic studies and covers new developments that are showing very promising results and that have led to a renewed interest in this field.

2.
J Org Chem ; 79(6): 2574-9, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24552129

RESUMO

Palladium nanoparticles (NPs) stabilized by a zwitterionic surfactant are revealed here to be good catalysts for the reductive amination of benzaldehydes using formate salts as hydrogen donors in aqueous isopropanol. In terms of environmental impact and economy, metallic NPs offer several advantages over homogeneous and traditional heterogeneous catalysts. NPs usually display greater activity due to the increased metal surface area and sometimes exhibit enhanced selectivity. Thus, it is possible to use very low loadings of expensive metal. The methodology eliminates the use of a hydrogen gas atmosphere or toxic or expensive reagents. A range of aromatic aldehydes were converted to benzylamines when reacted with primary and secondary amines in the presence of the Pd NPs, which also displayed good activity when supported on alumina. In every case, the Pd NPs could be easily recovered and reused up to three more times, and at the end of the process, the product was metal-free.


Assuntos
Benzaldeídos/química , Hidrogênio/química , Nanopartículas Metálicas/química , Paládio/química , Aminação , Catálise , Estrutura Molecular , Oxirredução , Propriedades de Superfície
3.
Anal Chem ; 85(21): 10142-8, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24090428

RESUMO

A selective method is proposed for the determination of palladium, gold, and sulfur in catalytic systems, by direct liquid analysis using energy dispersive X-ray fluorescence (EDXRF), under an atmosphere of helium or air. This method allows a nondestructive analysis of palladium, rhodium, platinum, and gold nanoparticulate catalysts stabilized by imidazolium propane sulfonate based zwitterionic surfactants, allowing the samples to be reused for catalytic studies. The signals from palladium, rhodium, platinum, and gold samples in the presence of imidazolium propane sulfonate-based zwitterionic surfactants obtained using EDXRF before (Pd(2+), Rh(2+), Pt(2+), and Au(3+)) and after (Pd(0), Rh(0), Pt(0), and Au(0)) formation of nanoparticles are essentially identical. The results show that the EDXRF method is nondestructive and allows detection and quantification of the main components of platinum, gold, rhodium, and palladium NPs, including the surfactant concentration, with detection and quantification limits in the range of 0.4-3 mg L(-1). The matrices used in such samples present no problems, even allowing the detection and quantification of interfering elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...