Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2302401120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096414

RESUMO

Complex topographies exhibit universal properties when fluvial erosion dominates landscape evolution over other geomorphological processes. Similarly, we show that the solutions of a minimalist landscape evolution model display invariant behavior as the impact of soil diffusion diminishes compared to fluvial erosion at the landscape scale, yielding complete self-similarity with respect to a dimensionless channelization index. Approaching its zero limit, soil diffusion becomes confined to a region of vanishing area and large concavity or convexity, corresponding to the locus of the ridge and valley network. We demonstrate these results using one dimensional analytical solutions and two dimensional numerical simulations, supported by real-world topographic observations. Our findings on the landscape self-similarity and the localized diffusion resemble the self-similarity of turbulent flows and the role of viscous dissipation. Topographic singularities in the vanishing diffusion limit are suggestive of shock waves and singularities observed in nonlinear complex systems.

2.
Philos Trans A Math Phys Eng Sci ; 380(2226): 20210033, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35527633

RESUMO

A defining feature of three-dimensional hydrodynamic turbulence is that the rate of energy dissipation is bounded away from zero as viscosity is decreased (Reynolds number increased). This phenomenon-anomalous dissipation-is sometimes called the 'zeroth law of turbulence' as it underpins many celebrated theoretical predictions. Another robust feature observed in turbulence is that velocity structure functions [Formula: see text] exhibit persistent power-law scaling in the inertial range, namely [Formula: see text] for exponents [Formula: see text] over an ever increasing (with Reynolds) range of scales. This behaviour indicates that the velocity field retains some fractional differentiability uniformly in the Reynolds number. The Kolmogorov 1941 theory of turbulence predicts that [Formula: see text] for all [Formula: see text] and Onsager's 1949 theory establishes the requirement that [Formula: see text] for [Formula: see text] for consistency with the zeroth law. Empirically, [Formula: see text] and [Formula: see text], suggesting that turbulent Navier-Stokes solutions approximate dissipative weak solutions of the Euler equations possessing (nearly) the minimal degree of singularity required to sustain anomalous dissipation. In this note, we adopt an experimentally supported hypothesis on the anti-alignment of velocity increments with their separation vectors and demonstrate that the inertial dissipation provides a regularization mechanism via the Kolmogorov 4/5-law. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

3.
Philos Trans A Math Phys Eng Sci ; 380(2225): 20210025, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35465719

RESUMO

We study two-dimensional Rayleigh-Bénard convection with Navier-slip, fixed temperature boundary conditions and establish bounds on the Nusselt number. As the slip-length varies with Rayleigh number [Formula: see text], this estimate interpolates between the Whitehead-Doering bound by [Formula: see text] for free-slip conditions (Whitehead & Doering. 2011 Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106, 244501) and the classical Doering-Constantin [Formula: see text] bound (Doering & Constantin. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53, 5957-5981). This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 1)'.

4.
Nat Commun ; 13(1): 2088, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440546

RESUMO

Material elements - which are lines, surfaces, or volumes behaving as passive, non-diffusive markers - provide an inherently geometric window into the intricate dynamics of chaotic flows. Their stretching and folding dynamics has immediate implications for mixing in the oceans or the atmosphere, as well as the emergence of self-sustained dynamos in astrophysical settings. Here, we uncover robust statistical properties of an ensemble of material loops in a turbulent environment. Our approach combines high-resolution direct numerical simulations of Navier-Stokes turbulence, stochastic models, and dynamical systems techniques to reveal predictable, universal features of these complex objects. We show that the loop curvature statistics become stationary through a dynamical formation process of high-curvature folds, leading to distributions with power-law tails whose exponents are determined by the large-deviations statistics of finite-time Lyapunov exponents of the flow. This prediction applies to advected material lines in a broad range of chaotic flows. To complement this dynamical picture, we confirm our theory in the analytically tractable Kraichnan model with an exact Fokker-Planck approach.

5.
Phys Rev Lett ; 115(2): 025001, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207472

RESUMO

In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.

6.
Artigo em Inglês | MEDLINE | ID: mdl-24827179

RESUMO

We derive an exact equation governing two-particle backwards mean-squared dispersion for both deterministic and stochastic tracer particles in turbulent flows. For the deterministic trajectories, we probe the consequences of our formula for short times and arrive at approximate expressions for the mean-squared dispersion which involve second order structure functions of the velocity and acceleration fields. For the stochastic trajectories, we analytically compute an exact t3 contribution to the squared separation of stochastic paths. We argue that this contribution appears also for deterministic paths at long times and present direct numerical simulation results for incompressible Navier-Stokes flows to support this claim. We also numerically compute the probability distribution of particle separations for the deterministic paths and the stochastic paths and show their strong self-similar nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...