Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749125

RESUMO

To enhance productivity, aquaculture is intensifying, with high-density fish ponds and increased feed input, contributing to nutrient load and eutrophication. Climate change further exacerbates cyanobacterial blooms and cyanotoxin production that affect aquatic organisms and consumers. A review was conducted to outline this issue from its inception - eutrophication, cyanobacterial blooms, their harmful metabolites and consequential effects (health and economic) in aquacultures. The strength of evidence regarding the relationship between cyanobacteria/cyanotoxins and potential consequences in freshwater aquacultures (fish production) globally were assessed as well, while identifying knowledge gaps and suggesting future research directions. With that aim several online databases were searched through June 2023 (from 2000), and accessible publications conducted in aquacultures with organisms for human consumption, reflecting cyanotoxin exposure, were selected. Data on cyanobacteria/cyanotoxins in aquacultures and its products worldwide were extracted and analyzed. Selected 63 papers from 22 countries were conducted in Asia (48%), Africa (22%), America (22%) and Europe (8%). Microcystis aeruginosa was most frequent, among over 150 cyanobacterial species. Cyanobacterial metabolites (mostly microcystins) were found in aquaculture water and fish from 18 countries (42 and 33 papers respectively). The most affected were small and shallow fish ponds, and omnivorous or carnivorous fish species. Cyanotoxins were detected in various fish organs, including muscles, with levels exceeding the tolerable daily intake in 60% of the studies. The majority of research was done in developing countries, employing less precise detection methods, making the obtained values estimates. To assess the risk of human exposure, the precise levels of all cyanotoxins, not just microcystins are needed, including monitoring their fate in aquatic food chains and during food processing. Epidemiological research on health consequences, setting guideline values, and continuous monitoring are necessary as well. Further efforts should focus on methods for elimination, prevention, and education.


Assuntos
Aquicultura , Cianobactérias , Água Doce , Cianobactérias/metabolismo , Água Doce/microbiologia , Microcistinas/análise , Animais , Eutrofização , Mudança Climática , Toxinas Bacterianas/análise , Humanos , Peixes
2.
Food Res Int ; 184: 114271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609248

RESUMO

The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.


Assuntos
Toxinas de Cianobactérias , Verduras , Animais , Suplementos Nutricionais , Músculos , Dieta Saudável
3.
Arch Toxicol ; 96(11): 2829-2863, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997789

RESUMO

Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.


Assuntos
Toxinas Bacterianas , Sistema Cardiovascular , Animais , Toxinas Bacterianas/toxicidade , Toxinas de Cianobactérias , Toxinas de Lyngbya , Mamíferos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Saxitoxina/toxicidade
4.
Environ Monit Assess ; 193(9): 554, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357469

RESUMO

Cyanobacteria are important members of lake plankton, but they have the ability to form blooms and produce cyanotoxins and thus cause a number of adverse effects. Freshwater ecosystems around the world have been investigated for the distribution of cyanobacteria and their toxins and the effects they have on the ecosystems. Similar research was performed on the Fehérvárcsurgó reservoir in Hungary during 2018. Cyanobacteria were present and blooming, and the highest abundance was recorded in July (2,822,000 cells/mL). The species present were Aphanizomenon flos-aquae, Microcystis flos-aquae, Microcystis wesenbergii, Cuspidothrix issatschenkoi, Dolichospermum flos-aquae, and Snowella litoralis. In July and September, the microcystin encoding gene mcyE and the saxitoxin encoding gene sxtG were amplified in the biomass samples. While a low concentration of microcystin-RR was found in one water sample from July, analyses of Abramis brama and Carassius gibelio caught from the reservoir did not show the presence of the investigated microcystins in the fish tissue. However, several histopathological changes, predominantly in gills and kidneys, were observed in the fish, and the damage was more severe during May and especially July, which coincides with the increase in cyanobacterial biomass during the summer months. Cyanobacteria may thus have adverse effects in this ecosystem.


Assuntos
Cianobactérias , Microcystis , Animais , Aphanizomenon , Ecossistema , Monitoramento Ambiental , Hungria , Lagos , Microcistinas/análise , Microcistinas/toxicidade
5.
J Water Health ; 18(3): 314-330, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32589618

RESUMO

Cyanobacteria are ancient photosynthetic microorganisms that shaped today's atmosphere. Anthropocentric and irresponsible activities are changing the atmosphere which favor the frequent occurrence and mass development of cyanobacteria. Extensive cyanobacterial blooming causes numerous problems, including negative effects on human skin. Climate change, depletion of ozone layer, and the increased ultraviolet radiation also affect the skin and lead to more frequent occurrence of skin cancer. This research, for the first time, attempts to establish a connection between these two factors, or whether, in addition to ultraviolet radiation, cyanobacteria can influence the incidence of melanoma. With this objective in mind, an epidemiological investigation was conducted in Vojvodina, Serbia. It was observed that the incidence of melanoma was higher in municipalities where water bodies used for recreation, irrigation and fishing are blooming; however, results could be considered as inconclusive, because of the restrictions in the cancer database. Nevertheless, results gathered from the reviewed literature support the hypothesis that cyanobacteria could be a new potential risk factor for melanoma, while climate change could be a catalyst that converts these potential risk factors into cofactors, which act synergistically with the main risk factor - ultraviolet radiation - and induce an increase of melanoma incidence.


Assuntos
Cianobactérias , Pele/microbiologia , Mudança Climática , Humanos , Incidência , Ozônio , Neoplasias Cutâneas , Raios Ultravioleta
6.
Arch Toxicol ; 93(9): 2429-2481, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31350576

RESUMO

Cyanobacteria are photoautotrophic organisms which occur in aquatic and terrestrial environments. They have the potential to produce toxins which pose a threat to human and animal health. This review covers the global distribution of the common cyanotoxins and related poisoning cases. A total of 468 selected articles on toxic cyanobacteria, dating from the earliest records until 2018, were reviewed. Most of the articles were published after 2000 (72%; 337 out of 468), which is consistent with the recent growth in interest in the analysis, toxinology and ecotoxicology of cyanotoxins. Animal and/or human poisoning cases were described in more than a third of the overall publications (38%; 177 out of 468). The reviewed publications showed that there were 1118 recorded identifications of major cyanotoxins in 869 freshwater ecosystems from 66 countries throughout the world. Microcystins were the most often recorded cyanotoxins worldwide (63%; 699 out of 1118), followed by cylindrospermopsin (10%; 107 out of 1118), anatoxins (9%; 100 out of 1118), and saxitoxins (8%; 93 out of 1118). Nodularins were the most rarely recorded cyanotoxins (2%; 19 out of 1118); however, there were also reports where cyanotoxins were not analysed or specified (9%; 100 out of 1118). The most commonly found toxic cyanobacterial genera were Microcystis spp. (669 reports), Anabaena spp. (397 reports), Aphanizomenon spp. (100 reports), Planktothrix spp. (98 reports), and Oscillatoria spp. (75 reports). Furthermore, there were 183 recorded cyanotoxin poisonings of humans and/or animals. Out of all toxic cyanobacterial blooms reviewed in this paper, the highest percentage of associated poisonings was found in North and Central America (39%; 69 cases out of 179), then Europe (20%; 35 out of 179), Australia including New Zealand (15%; 27 out of 179), and Africa (11%; 20 out of 179), while the lowest percentage was related to Asia (8%; 14 cases out of 179) and South America (8%; 14 cases out of 179). Events where only animals were known to have been affected were 63% (114 out of 182), whereas 32% (58 out of 182) of the investigated events involved only humans. A historical overview of human and animal poisoning episodes associated with cyanobacterial blooms is presented. Further, geographical data on the occurrence of cyanotoxins and related poisonings based on the available literature are shown. Some countries (mainly European) have done very intensive research on the occurrence of toxic cyanobacteria and cyanotoxins, and reported related ecotoxicological observations, while in some countries the lack of data is apparent. The true global extent of cyanotoxins and associated poisonings is likely to be greater than found in the available literature, and it can be assumed that ecotoxicological and hygienic problems caused by toxic cyanobacteria may occur in more environments.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Toxinas Marinhas/isolamento & purificação , Microcistinas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , África , América , Animais , Ásia , Australásia , Cianobactérias/classificação , Ecossistema , Europa (Continente) , Eutrofização , Água Doce/microbiologia , Humanos , Toxinas Marinhas/intoxicação , Microcistinas/intoxicação , Intoxicação/epidemiologia , Poluentes Químicos da Água/intoxicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...