Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 119(3): 630-43, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21883213

RESUMO

Proteasome-mediated proteolysis is a major protein degradation mechanism in cells and its dysfunction has been implicated in the pathogenesis of several neurodegenerative diseases, each with the common features of neuronal death and formation of ubiquitinated inclusions found within neurites, the cell body, or nucleus. Previous models of proteasome dysfunction have employed pharmacological inhibition of the catalytic subunits of the 20S proteasome core, or the genetic manipulation of specific subunits resulting in altered proteasome assembly. In this study, we report the use of dominant negative subunits of the 19S regulatory proteasome complex that mediate the recognition of ubiquitinated substrates as well as the removal of the poly-ubiquitin chain. Interestingly, while each mutant subunit-induced inclusion formation, like that seen with pharmacological inhibition of the 20S proteasome, none was able to induce apoptotic death, or trigger activation of macroautophagy, in either dopaminergic cell lines or primary cortical neurons. This finding highlights the dissociation between the mechanisms of neuronal inclusion formation and the induction of cell death, and represents a novel cellular model for Lewy body-like inclusion formation in neurons.


Assuntos
Marcação de Genes/métodos , Corpos de Inclusão/enzimologia , Neurônios/enzimologia , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas/genética , Ubiquitinação/genética , Animais , Morte Celular/genética , Células Cultivadas , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Camundongos , Neurônios/patologia , Células PC12 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos
2.
Eur J Cell Biol ; 90(4): 312-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21093098

RESUMO

Intercellular communication via GAP Junctions plays an important role in tissue homeostasis, apoptosis, carcinogenesis, cell proliferation and differentiation. Hepatocyte connexins (Cx) 26 and 32 levels are decreased during the de-differentiation process of primary hepatocytes in culture, a situation that is also characterized by a decrease in S-Adenosylmethionine (SAMe) levels. In this current study, we show that SAMe supplementation in cultured hepatocytes every 12h, leads to an up-regulation of Cx26 and 32 mRNA and protein levels and blocks culture-induced Cx43 expression, although it failed to increase Cx26 and 32 membrane localization and GAP junction intracellular communication. SAMe reduced nuclear ß-catenin accumulation, which is known to stimulate the TCF/LEF-dependent gene transcription of Cx43. Moreover SAMe-induced reduction in Cx43 and ß-catenin was prevented by the proteasome inhibitor MG132, and was not mediated by GSK3 activity. SAMe, and its metabolite 5'-methylthioadenosine (MTA) increased Cx26 mRNA in a process partially mediated by Adenosine A(2A) receptors but independent of PKA. Finally livers from MAT1A knockout mice, characterized by low hepatic SAMe levels, express higher Cx43 and lower Cx26 and 32 protein levels than control mice. These results suggest that SAMe maintains a characteristic expression pattern of the different Cxs in hepatocytes by differentially regulating their levels.


Assuntos
Conexinas/metabolismo , Hepatócitos/metabolismo , S-Adenosilmetionina/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Conexinas/genética , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Knockout , S-Adenosilmetionina/genética , Tionucleosídeos/genética , Tionucleosídeos/metabolismo , beta Catenina/metabolismo
3.
Nat Neurosci ; 12(7): 839-47, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525946

RESUMO

Notch signaling is central to vertebrate development, and analysis of Notch has provided important insights into pathogenetic mechanisms in the CNS and many other tissues. However, surprisingly little is known about the role of Notch in the development and pathology of Schwann cells and peripheral nerves. Using transgenic mice and cell cultures, we found that Notch has complex and extensive regulatory functions in Schwann cells. Notch promoted the generation of Schwann cells from Schwann cell precursors and regulated the size of the Schwann cell pool by controlling proliferation. Notch inhibited myelination, establishing that myelination is subject to negative transcriptional regulation that opposes forward drives such as Krox20. Notably, in the adult, Notch dysregulation resulted in demyelination; this finding identifies a signaling pathway that induces myelin breakdown in vivo. These findings are relevant for understanding the molecular mechanisms that control Schwann cell plasticity and underlie nerve pathology, including demyelinating neuropathies and tumorigenesis.


Assuntos
Diferenciação Celular/fisiologia , Bainha de Mielina/fisiologia , Receptores Notch/metabolismo , Células de Schwann/fisiologia , Transdução de Sinais , Animais , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Doenças Desmielinizantes/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Glicoproteínas/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/citologia , Crista Neural/fisiologia , Neuregulina-1/metabolismo , Traumatismos dos Nervos Periféricos , Nervos Periféricos/embriologia , Nervos Periféricos/crescimento & desenvolvimento , Ratos , Receptor ErbB-2/metabolismo , Células de Schwann/citologia , Fatores de Tempo
4.
J Neurosci ; 26(33): 8417-27, 2006 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16914667

RESUMO

During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.


Assuntos
Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Células de Schwann/fisiologia , Nervo Isquiático/embriologia , Nervo Isquiático/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Axotomia , Morte Celular/fisiologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Sinergismo Farmacológico , Embrião de Mamíferos , Desenvolvimento Embrionário , Camundongos , Camundongos Knockout , Bainha de Mielina/fisiologia , Compressão Nervosa , Proteínas do Tecido Nervoso/metabolismo , Neuregulina-1/fisiologia , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Células de Schwann/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo
5.
Glia ; 53(5): 501-15, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16369933

RESUMO

To elucidate the molecular mechanisms involved in Schwann cell development, we profiled gene expression in the developing and injured rat sciatic nerve. The genes that showed significant changes in expression in developing and dedifferentiated nerve were validated with RT-PCR, in situ hybridisation, Western blot and immunofluorescence. A comprehensive approach to annotating micro-array probes and their associated transcripts was performed using Biopendium, a database of sequence and structural annotation. This approach significantly increased the number of genes for which a functional insight could be found. The analysis implicates agrin and two members of the collapsin response-mediated protein (CRMP) family in the switch from precursors to Schwann cells, and synuclein-1 and alphaB-crystallin in peripheral nerve myelination. We also identified a group of genes typically related to chondrogenesis and cartilage/bone development, including type II collagen, that were expressed in a manner similar to that of myelin-associated genes. The comprehensive function annotation also identified, among the genes regulated during nerve development or after nerve injury, proteins belonging to high-interest families, such as cytokines and kinases, and should therefore provide a uniquely valuable resource for future research.


Assuntos
Desenvolvimento Embrionário/fisiologia , Bainha de Mielina/fisiologia , Células de Schwann/fisiologia , Agrina/biossíntese , Agrina/genética , Animais , Western Blotting , Bucladesina/farmacologia , Células Cultivadas , Biologia Computacional , Citocinas/biossíntese , Citocinas/genética , Feminino , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Hibridização In Situ , Interleucina-8/biossíntese , Interleucina-8/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Crista Neural/citologia , Crista Neural/embriologia , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Gravidez , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neuropatia Ciática/patologia , Cadeia B de alfa-Cristalina/biossíntese , Cadeia B de alfa-Cristalina/genética , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
6.
J Cell Biol ; 164(3): 385-94, 2004 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-14757751

RESUMO

The transcription factor Krox-20 controls Schwann cell myelination. Schwann cells in Krox-20 null mice fail to myelinate, and unlike myelinating Schwann cells, continue to proliferate and are susceptible to death. We find that enforced Krox-20 expression in Schwann cells cell-autonomously inactivates the proliferative response of Schwann cells to the major axonal mitogen beta-neuregulin-1 and the death response to TGFbeta or serum deprivation. Even in 3T3 fibroblasts, Krox-20 not only blocks proliferation and death but also activates the myelin genes periaxin and protein zero, showing properties in common with master regulatory genes in other cell types. Significantly, a major function of Krox-20 is to suppress the c-Jun NH2-terminal protein kinase (JNK)-c-Jun pathway, activation of which is required for both proliferation and death. Thus, Krox-20 can coordinately control suppression of mitogenic and death responses. Krox-20 also up-regulates the scaffold protein JNK-interacting protein 1 (JIP-1). We propose this as a possible component of the mechanism by which Krox-20 regulates JNK activity during Schwann cell development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose/fisiologia , Divisão Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , MAP Quinase Quinase Quinase 1 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Células de Schwann/fisiologia , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Animais Recém-Nascidos , Proteínas de Transporte/metabolismo , Sobrevivência Celular , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Proteína 2 de Resposta de Crescimento Precoce , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase 7 , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuregulina-1 , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células de Schwann/citologia , Nervo Isquiático/citologia , Nervo Isquiático/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
7.
Mol Cell Neurosci ; 25(1): 30-41, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14962738

RESUMO

Regulation of survival during gliogenesis from the trunk neural crest is poorly understood. Using adapted survival assays, we directly compared crest cells and the crest-derived precursor populations that generate satellite cells and Schwann cells. A range of factors that supports Schwann cells and glial precursors does not rescue crest, with the major exception of neuregulin-1 that rescues crest cells provided they contact the extracellular matrix. Autocrine survival appears earlier in developing satellite cells than Schwann cells. Satellite cells also show early expression of S100beta, BFABP and fibronectin and early survival responses to IGF-1, NT-3 and PDGF-BB that in developing Schwann cells are not seen until the precursor/Schwann cell transition. These experiments define novel differences between crest cells and early glia and show that entry to the glial lineage is an important point for regulation of survival responses. They show that survival mechanisms among PNS glia differ early in development and that satellite cell development runs ahead of schedule compared to Schwann cells in several significant features.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular/fisiologia , Crista Neural/embriologia , Neuroglia/metabolismo , Sistema Nervoso Periférico/embriologia , Células-Tronco/metabolismo , Animais , Linhagem Celular Tumoral , Linhagem da Célula/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Feto , Fibronectinas/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Crista Neural/citologia , Crista Neural/metabolismo , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Neuroglia/citologia , Técnicas de Cultura de Órgãos , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas S100/metabolismo , Células Satélites Perineuronais/citologia , Células Satélites Perineuronais/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...