Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 32(7): 511-520, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502893

RESUMO

Evidence suggests that n-3 polyunsaturated fatty acids may act as activators of the Nrf2 antioxidant pathway. The antioxidant response, in turn, promotes neuronal differentiation and neurite outgrowth. Nrf2 has recently been suggested to be a cell intrinsic mediator of docosohexanoic acid (DHA) signaling. In the current study, we assessed whether DHA-mediated axodendritic development was dependent on activation of the Nrf2 pathway and whether Nrf2 protected from agrochemical-induced neuritic retraction. Expression profiling of the DHA-enriched Fat-1 mouse brain relative to wild type showed a significant enrichment of genes associated with neuronal development and neuronal projection and genes associated with the Nrf2-transcriptional pathway. Moreover, we found that primary cortical neurons treated with DHA showed a dose-dependent increase in Nrf2 transcriptional activity and Nrf2-target gene expression. DHA-mediated activation of Nrf2 promoted neurite outgrowth and inhibited oxidative stress-induced neuritic retraction evoked by exposure to agrochemicals. Finally, we provide evidence that this effect is largely dependent on induction of the Nrf2-target gene NAD(P)H: (quinone acceptor) oxidoreductase 1 (NQO1), and that silencing of either Nrf2 or Nqo1 blocks the effects of DHA on the axodendritic compartment. Collectively, these data support a role for the Nrf2-NQO1 pathway in DHA-mediated axodendritic development and protection from agrochemical exposure.


Assuntos
NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Crescimento Neuronal/fisiologia , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Dendritos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/genética , Crescimento Neuronal/genética , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 116(28): 14280-14289, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235589

RESUMO

While mutations in the SNCA gene (α-synuclein [α-syn]) are causal in rare familial forms of Parkinson's disease (PD), the prevalence of α-syn aggregates in the cortices of sporadic disease cases emphasizes the need to understand the link between α-syn accumulation and disease pathogenesis. By employing a combination of human pluripotent stem cells (hPSCs) that harbor the SNCA-A53T mutation contrasted against isogenic controls, we evaluated the consequences of α-syn accumulation in human A9-type dopaminergic (DA) neurons (hNs). We show that the early accumulation of α-syn in SNCA-A53T hNs results in changes in gene expression consistent with the expression profile of the substantia nigra (SN) from PD patients, analyzed post mortem. Differentially expressed genes from both PD patient SN and SNCA-A53T hNs were associated with regulatory motifs transcriptionally activated by the antioxidant response pathway, particularly Nrf2 gene targets. Differentially expressed gene targets were also enriched for gene ontologies related to microtubule binding processes. We thus assessed the relationship between Nrf2-mediated gene expression and neuritic pathology in SNCA-A53T hNs. We show that SNCA-mutant hNs have deficits in neuritic length and complexity relative to isogenic controls as well as contorted axons with Tau-positive varicosities. Furthermore, we show that mutant α-syn fails to complex with protein kinase C (PKC), which, in turn, results in impaired activation of Nrf2. These neuritic defects result from impaired Nrf2 activity on antioxidant response elements (AREs) localized to a microtubule-associated protein (Map1b) gene enhancer and are rescued by forced expression of Map1b as well as by both Nrf2 overexpression and pharmaceutical activation in PD neurons.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Fator 2 Relacionado a NF-E2/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Animais , Elementos de Resposta Antioxidante/genética , Axônios/efeitos dos fármacos , Axônios/patologia , Diferenciação Celular/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Elementos Facilitadores Genéticos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Neuritos/metabolismo , Neuritos/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Proteína Quinase C/genética , Substância Negra/metabolismo , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...