Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112889, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37527036

RESUMO

Microglia shift toward an inflammatory phenotype during aging that is thought to exacerbate age-related neurodegeneration. The molecular and cellular signals that resolve neuroinflammation post-injury are largely undefined. Here, we exploit systems genetics methods based on the extended BXD murine reference family and identify IGFBPL1 as an upstream cis-regulator of microglia-specific genes to switch off inflammation. IGFBPL1 is expressed by mouse and human microglia, and higher levels of its expression resolve lipopolysaccharide-induced neuroinflammation by resetting the transcriptome signature back to a homeostatic state via IGF1R signaling. Conversely, IGFBPL1 deficiency or selective deletion of IGF1R in microglia shifts these cells to an inflammatory landscape and induces early manifestation of brain tauopathy and retinal neurodegeneration. Therapeutic administration of IGFBPL1 drives pro-homeostatic microglia and prevents glaucomatous neurodegeneration and vision loss in mice. These results identify IGFBPL1 as a master driver of the counter-inflammatory microglial modulator that presents an endogenous resolution of neuroinflammation to prevent neurodegeneration in eye and brain.


Assuntos
Microglia , Tauopatias , Camundongos , Animais , Humanos , Microglia/metabolismo , Doenças Neuroinflamatórias , Tauopatias/metabolismo , Inflamação/metabolismo , Encéfalo/metabolismo , Homeostase , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas Supressoras de Tumor/metabolismo
2.
Gels ; 9(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36661824

RESUMO

Engineering matrices for cell therapy requires design criteria that include the ability of these materials to support, protect and enhance cellular behavior in vivo. The chemical and mechanical formulation of the biomaterials can influence not only target cell phenotype but also cellular differentiation. In this study, we have demonstrated the effect of a gelatin (Gtn)-hyaluronic acid (HA) hydrogel on human retinal progenitor cells (hRPCs) and show that by altering the mechanical properties of the materials, cellular behavior is altered as well. We have created an interpenetrating network polymer capable of encapsulating hRPCs. By manipulating the stiffness of the hydrogel, the differentiation potential of the hRPCs was controlled. Interpenetrating network 75 (IPN 75; 75% HA) allowed higher expression of rod photoreceptor markers, whereas cone photoreceptor marker expression was found to be higher in IPN 50. In vivo testing of these living matrices performed in Long-Evans rats showed higher levels of rod photoreceptor marker expression when IPN 75 was injected versus IPN 50. These biomaterials mimic biological cues that are required to simulate the dynamic complexity of natural retinal ECM. These hydrogels can be used as a vehicle for cell delivery in vivo as well as for expansion and differentiation in an in vitro 3D system in a highly reproducible manner.

3.
J Cell Mol Med ; 26(11): 3254-3268, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35481949

RESUMO

Despite notable efforts and significant therapeutical advances, age-related macular degeneration remains the single most common reason for vision loss. Retinal progenitor cells (RPCs) are considered promising candidates for cellular treatments that repair and restore vision. In this allogenic study, the phenotypic profile of pig and human RPCs derived using similar manufacturing processes is compared. The long-term (12-week) survival of green fluorescent protein-pig retinal progenitor cells GFP-pRPC after subretinal transplantation into normal miniature pig (mini-pig) retina is investigated. Human eyes are both anatomically and physiologically mimicked by pig eyes, so the pig is an ideal model to show an equivalent way of delivering cells, immunological response and dosage. The phenotypic equivalency of porcine and clinically intended human RPCs was established. Thirty-nine mini-pigs are used in this study, and vehicle-injected eyes and non-injected eyes serve as controls. Six groups are given different dosages of pRPCs, and the cells are found to survive well in all groups. At 12 weeks, strong evidence of integration is indicated by the location of the grafted cells within the neuro-retina, extension of processes to the plexiform layers and expression of key retinal markers such as recoverin, rhodopsin and synaptophysin. No immunosuppression is used, and no immune response is found in any of the groups. No pRPC-related histopathology findings are reported in the major organs investigated. An initial dose of 250 k cells in 100 µl of buffer is established as an appropriate initial dose for future human clinical trials.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Retina , Animais , Diferenciação Celular/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Retina/metabolismo , Transplante de Células-Tronco , Suínos , Porco Miniatura
4.
NPJ Regen Med ; 6(1): 85, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930951

RESUMO

Biomaterial-based cell replacement approaches to regenerative medicine are emerging as promising treatments for a wide array of profound clinical problems. Here we report an interpenetrating polymer network (IPN) composed of gelatin-hydroxyphenyl propionic acid and hyaluronic acid tyramine that is able to enhance intravitreal retinal cell therapy. By tuning our bioinspired hydrogel to mimic the vitreous chemical composition and mechanical characteristics we were able to improve in vitro and in vivo viability of human retinal ganglion cells (hRGC) incorporated into the IPN. In vivo vitreal injections of cell-bearing IPN in rats showed extensive attachment to the inner limiting membrane of the retina, improving with hydrogels stiffness. Engrafted hRGC displayed signs of regenerating processes along the optic nerve. Of note was the decrease in the immune cell response to hRGC delivered in the gel. The findings compel further translation of the gelatin-hyaluronic acid IPN for intravitreal cell therapy.

5.
Tissue Eng Part A ; 27(11-12): 714-723, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33256564

RESUMO

Recent advancements in the delivery of therapeutics for retinal diseases include the development of injectable hydrogels, networks of one or more hydrophilic polymers that contain a high-volume fraction of water. These systems are of particular interest due to their biocompatibility, permeability to water-soluble metabolites, and function as minimally invasive injectable delivery vehicles. Recently, hydrogels for ophthalmic applications have been developed that display a controlled release of factors necessary for cellular survival and proliferation. Understanding the relationship between the volume water fraction and the physical, chemical, and diffusion properties of the hydrogel scaffold could aid in the improvement of existing drug delivery treatments for retinal regeneration. In this study, we compared the diffusion and release of human epidermal growth factor (hEGF) encapsulated in different injectable homogenous and heterogenous hydrogels, namely gelatin-hydroxyphenyl propionic acid (Gtn-HPA) and hyaluronic acid-tyramine (HA-Tyr)-based hydrogels. These experimental results were compared with the measured stiffness and water content of these hydrogels and applied to different diffusion theories of polymers to determine the model of best fit. We find that the normalized diffusion and release of hEGF increases with free water content in injectable hydrogels: ranging from 0.176 at 41% free water in HA-Tyr to 0.2 at 53% free water in Gtn-HPA, whereas it decreases with hydrogel stiffness: 600 Pa for Gtn-HPA and 1440 Pa for HA-Tyr. Further, we compared our experimental data with theoretical diffusion models. We found that homogeneous theoretical models, notably the hydrodynamic model (giving a normalized diffusion close to 0.2), provide the most suitable explanation for the measured solute diffusion coefficient. Impact statement Diffusion in a three-dimensional system is a key factor in designing new hydrogel-based materials. It allows to control and predict diffusion in implants and delivery systems. However, very little is done to explore and test the diffusion since it is a complex process. Many models can predict solute diffusion; however, practical application using these models has not yet been done. We have shown the variation of these models in a practical extent, which could have a tremendous impact on designing biomaterial for biological application as it allows one to understand the diffusion of injected drugs and growth factors.


Assuntos
Hidrogéis , Água , Gelatina , Humanos , Ácido Hialurônico , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular
6.
Cell Transplant ; 29: 963689720964383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33356508

RESUMO

The optic pathway glioma (OPG) is a slow-growing brain tumor that arises along the optic nerve or its downstream connections and causing vision to gradually worsen with time. This tumor forms in children with a genetic condition called neurofibromatosis type 1 (NF1), causing tumors to grow on nerves. In normal conditions, glial cells are there to support and protect nerve cells but, in NF1-OPG, glial cells have a genetic defect and grow out of control forming a tumor called a glioma. There are no rat models of NF1-OPG that can be used to explore various treatment options, and mouse models make interventional studies difficult due to their small eye size. We have created a model in which to study the progression of tumor growth in the optic nerve and establish the anatomical and functional consequences of the model and determine its suitability to serve as a surrogate for human disease. C6 rat glioma cells were injected into the optic nerve of Long-Evans rats and allowed to proliferate for 2 weeks. The eye clearly showed proptosis and lens opacity was observed, likely due to increased intraocular pressure caused by growing tumors. Hematoxylin-eosin staining showed marked cellularity, with hyperchromatism and pleomorphism. There was prominent area of necrosis with neoplastic cells palisading around the penumbra. Immunostaining with markers such as S100, ß-tubulin III, Foxp3, CD45, Vimentin, and Ki67 confirmed low-grade tumor formation, with a mild immune response. Our results show the utility of a surgically induced rat model of OPG that may be used for exploring various treatment options for NF1 ocular tumors.


Assuntos
Glioma/metabolismo , Nervo Óptico/metabolismo , Doenças Retinianas/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Glioma/genética , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Neurofibromina 1/metabolismo , Nervo Óptico/patologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
7.
Mol Biol Rep ; 47(3): 1613-1623, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31950326

RESUMO

Using stem and progenitor cells to treat retinal disorders holds great promise. Using defined culture conditions to maintain the desires phenotype is of utmost clinical importance. We cultured human retinal progenitor cells (hRPCs) in different conditions: such as normoxia (20% oxygen), and hypoxia (5% oxygen) with and without knock-out serum replacement (KOSR) to evaluate its effect on these cells. KOSR is known nutrient supplement often used to replace bovine serum for culturing embryonic or pluripotent stem cells, especially those destined for clinical applications. The purpose of this study was to identify the impact of different environmental and chemical cues to determine if this alters the fate of these cells. Our results indicate that cells cultured with or without KOSR do not show significant differences in viability, but that the oxygen tension can significantly change their viability (higher in hypoxia than normoxia). However, cells with KOSR in hypoxia condition expressed significantly higher stemness markers such as C-myc and Oct4 (31.20% and 13.44% respectively) in comparison to hRPCs cultured in KOSR at normoxia (12.07% and 4.05%). Furthermore, levels of markers for retinal commitment such as rhodopsin were significantly lower in the KOSR supplemented cells in hypoxia culture compared to normoxia. KOSR is known to improve proliferation and maintain stemness of embryonic cells and our experiments suggest that hRPCs maintain their proliferation and stemness characteristics in hypoxia with KOSR supplement. Normoxia, however, results in mature cell marker expression, suggesting a profound effect of oxygen tension on these cells.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Oxigênio/farmacologia , Retina/citologia , Células-Tronco/efeitos dos fármacos , Animais , Bovinos , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Rodopsina/metabolismo , Soroalbumina Bovina/farmacologia , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...