Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 18(2): 241-52, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11205969

RESUMO

Although a great deal of experimental evidence supports the notion of a Reichardt correlator as a mechanism for biological motion detection, the correlator does not signal true image velocity. This study examines the accuracy with which realistic Reichardt correlators can provide velocity estimates in an organism's natural visual environment. The predictable statistics of natural images imply a consistent correspondence between mean correlator response and velocity, allowing the otherwise ambiguous Reichardt correlator to act as a practical velocity estimator. Analysis and simulations suggest that processes commonly found in visual systems, such as prefiltering, response compression, integration, and adaptation, improve the reliability of velocity estimation and expand the range of velocities coded. Experimental recordings confirm our predictions of correlator response to broadband images.


Assuntos
Modelos Biológicos , Percepção de Movimento/fisiologia , Animais , Simulação por Computador , Dípteros/fisiologia , Movimento (Física) , Fatores de Tempo
2.
Biol Cybern ; 80(1): 11-23, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20809292

RESUMO

Canavier et al. (1997) used phase response curves (PRCs) of individual oscillators to characterize the possible modes of phase-locked entrainment of an N-oscillator ring network. We extend this work by developing a mathematical criterion to determine the local stability of such a mode based on the PRCs. Our method does not assume symmetry; neither the oscillators nor their connections need be identical. To use these techniques for predicting modes and determining their stability, one need only determine the PRC of each oscillator in the ring either experimentally or from a computational model. We show that network stability cannot be determined by simply testing the ability of each oscillator to entrain the next. Stability depends on the number of neurons in the ring, the type of mode, and the slope of each PRC at the point of entrainment of the respective neuron. We also describe simple criteria which are either necessary or sufficient for stability and examine the implications of these results.

3.
Biol Cybern ; 77(6): 367-80, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9433752

RESUMO

In order to assess the relative contributions to pattern-generation of the intrinsic properties of individual neurons and of their connectivity, we examined a ring circuit composed of four complex physiologically based oscillators. This circuit produced patterns that correspond to several quadrupedal gaits, including the walk, the bound, and the gallop. An analysis using the phase response curve (PRC) of an uncoupled oscillator accurately predicted all modes exhibited by this circuit and their phasic relationships--with the caveat that in certain parameter ranges, bistability in the individual oscillators added nongait patterns that were not amenable to PRC analysis, but further enriched the pattern-generating repertoire of the circuit. The key insights in the PRC analysis were that in a gait pattern, since all oscillators are entrained at the same frequency, the phase advance or delay caused by the action of each oscillator on its postsynaptic oscillator must be the same, and the sum of the normalized phase differences around the ring must equal to an integer. As suggested by several previous studies, our analysis showed that the capacity to exhibit a large number of patterns is inherent in the ring circuit configuration. In addition, our analysis revealed that the shape of the PRC for the individual oscillators determines which of the theoretically possible modes can be generated using these oscillators as circuit elements. PRCs that have a complex shape enable a circuit to produce a wider variety of patterns, and since complex neurons tend to have complex PRCs, enriching the repertoire of patterns exhibited by a circuit may be the function of some intrinsic neuronal complexity. Our analysis showed that gait transitions, or more generally, pattern transitions, in a ring circuit do not require rewiring the circuit or any changes in the strength of the connections. Instead, transitions can be achieved by using a control parameter, such as stimulus intensity, to sculpt the PRC so that it has the appropriate shape for the desired pattern(s). A transition can then be achieved simply by changing the value of the control parameter so that the first pattern either ceases to exist or loses stability, while a second pattern either comes into existence or gains stability. Our analysis illustrates the predictive value of PRCs in circuit analysis and can be extended to provide a design method for pattern-generating circuits.


Assuntos
Marcha/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Locomoção/fisiologia , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...