Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 240: 107637, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331109

RESUMO

Here we describe the acute myocardial effects of an elapid (red spitting cobra, Naja pallida) and a viper (western diamondback rattlesnake, Crotalus atrox) venom using an ex vivo heart model. Our results reveal two different pathophysiological trajectories that influence heart function and morphology. While cobra venom causes a drop in contractile force, rattlesnake venom causes enhanced contractility and frequency that coincides with differences in myocellular morphology. This highlights the medical complexity of snake venom-induced cardiotoxicity.


Assuntos
Venenos de Crotalídeos , Naja , Serpentes Peçonhentas , Animais , Crotalus , Cardiotoxicidade , Venenos Elapídicos/toxicidade , Elapidae , Venenos de Crotalídeos/toxicidade
2.
Animals (Basel) ; 13(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36766283

RESUMO

In 2016, the Dutch government declared its commitment to phasing out animal experiments by 2025. Although a high number of animal experiments are still performed and the 2025 target will not be met, the commitment remains. Efforts are being made to identify levers that might foster the transition to animal-free science. Education has been found to play a key role in the future of animal-free science and young generations are increasingly seen as key stakeholders. However, their attitudes toward the transition to animal-free innovations have not been investigated. The present article focuses on the values and beliefs held by students, who in 2022, participated in the course 'Replacing Animal Testing' (RAT) Challenge, organized by a consortium of Dutch universities. Contextually, students' motivations to follow the course were investigated. The research was based on a qualitative study, including semi-structured interviews and a literature review. Our analysis of the findings revealed that students feel aligned with the social, ethical, and scientific reasons that support the transition to animal-free innovations. Moreover, the participants identified a series of regulatory, educational, cultural, and political obstacles to the transition that align with those identified in recent literature. From the discussion of these findings, we extrapolated six fundamental challenges that need to be addressed to foster the transition to animal-free science in an acceptable and responsible way.

3.
Clin Cancer Res ; 23(22): 7020-7033, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821557

RESUMO

Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse.Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53-mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1-/-;p53-/- mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells.Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1-mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G0-like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1-mutated mouse mammary tumors.Conclusions: Our data show that targeting G0-like cells is crucial for the eradication of BRCA1/p53-deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020-33. ©2017 AACR.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genes BRCA1 , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Cisplatino/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Genes p53 , Humanos , Camundongos , Camundongos Knockout , Nimustina/farmacologia
4.
J Clin Invest ; 126(8): 2903-18, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27454287

RESUMO

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos , Deleção de Genes , Neoplasias Mamárias Animais/genética , Alelos , Animais , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Cruzamentos Genéticos , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Efeito Fundador , Mutação da Fase de Leitura , Engenharia Genética , Humanos , Masculino , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Mutação , Transplante de Neoplasias , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Recombinação Genética
5.
Arch Physiol Biochem ; 120(1): 40-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24377880

RESUMO

Stimulation of cellular fatty acid uptake by induction of insulin signalling or AMP-kinase (AMPK) activation is due to translocation of the fatty acid-transporter CD36 from intracellular stores to the plasma membrane (PM). For investigating the role of the four Cys-residues within CD36's cytoplasmic tails in CD36 translocation, we constructed CHO-cells expressing CD36 mutants in which all four, two, or one of the intracellular Cys were replaced by Ser. Intracellular and PM localization of all mutants was similar to wild-type CD36 (CD36wt). Hence, the four Cys do not regulate sub-cellular CD36 localization. However, in contrast to CD36wt, insulin or AMPK activation failed to induce translocation of any of the mutants, indicating that all four intracellular Cys residues are essential for CD36 translocation. The mechanism of defective translocation of mutant CD36 is unknown, but appears not due to loss of S-palmitoylation of the cytoplasmic tails or to aberrant oligomerization of the mutants.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antígenos CD36/química , Antígenos CD36/metabolismo , Cisteína , Insulina/metabolismo , Espaço Intracelular/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD36/genética , Células CHO , Cricetinae , Cricetulus , Mutação , Transporte Proteico
6.
Cancer Discov ; 3(10): 1142-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23867111

RESUMO

UNLABELLED: Mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers, and therefore sequence analysis of both genes is routinely conducted in patients with early-onset breast cancer. Besides mutations that clearly abolish protein function or are known to increase cancer risk, a large number of sequence variants of uncertain significance (VUS) have been identified. Although several functional assays for BRCA1 VUSs have been described, thus far it has not been possible to conduct a high-throughput analysis in the context of the full-length protein. We have developed a relatively fast and easy cDNA-based functional assay to classify BRCA1 VUSs based on their ability to functionally complement BRCA1-deficient mouse embryonic stem cells. Using this assay, we have analyzed 74 unclassified BRCA1 missense mutants for which all predicted pathogenic variants are confined to the BRCA1 RING and BRCT domains. SIGNIFICANCE: BRCA1 VUSs are frequently found in patients with hereditary breast or ovarian cancer and present a serious problem for clinical geneticists. This article describes the generation, validation, and application of a reliable high-throughput assay for the functional classification of BRCA1 sequence variants of uncertain significance.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Genes BRCA1 , Teste de Complementação Genética , Ensaios de Triagem em Larga Escala/métodos , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Proteína BRCA1/química , Proliferação de Células , Cisplatino/farmacologia , Reparo do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Células-Tronco Embrionárias/fisiologia , Feminino , Variação Genética , Recombinação Homóloga , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Domínios RING Finger
7.
Proc Natl Acad Sci U S A ; 110(21): 8632-7, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23657012

RESUMO

Germ-line mutations in PALB2 lead to a familial predisposition to breast and pancreatic cancer or to Fanconi Anemia subtype N. PALB2 performs its tumor suppressor role, at least in part, by supporting homologous recombination-type double strand break repair (HR-DSBR) through physical interactions with BRCA1, BRCA2, and RAD51. To further understand the mechanisms underlying PALB2-mediated DNA repair and tumor suppression functions, we targeted Palb2 in the mouse. Palb2-deficient murine ES cells recapitulated DNA damage defects caused by PALB2 depletion in human cells, and germ-line deletion of Palb2 led to early embryonic lethality. Somatic deletion of Palb2 driven by K14-Cre led to mammary tumor formation with long latency. Codeletion of both Palb2 and Tumor protein 53 (Trp53) accelerated mammary tumor formation. Like BRCA1 and BRCA2 mutant breast cancers, these tumors were defective in RAD51 focus formation, reflecting a defect in Palb2 HR-DSBR function, a strongly suspected contributor to Brca1, Brca2, and Palb2 mammary tumor development. However, unlike the case of Brca1-mutant cells, Trp53bp1 deletion failed to rescue the genomic instability of Palb2- or Brca2-mutant primary lymphocytes. Therefore, Palb2-driven DNA damage control is, in part, distinct from that executed by Brca1 and more similar to that of Brca2. The mechanisms underlying Palb2 mammary tumor suppression functions can now be explored genetically in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Deleção de Genes , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Mutantes , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/patologia , Proteínas Nucleares/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
8.
Cancer Discov ; 3(1): 68-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103855

RESUMO

UNLABELLED: Inhibition of PARP is a promising therapeutic strategy for homologous recombination-deficient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-deficient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the P-glycoprotein drug efflux transporter. Here, we show that tumor-specific genetic inactivation of P-glycoprotein increases the long-term response of BRCA1-deficient mouse mammary tumors to olaparib, but these tumors eventually developed PARPi resistance. In a fraction of cases, this resistance is caused by partial restoration of homologous recombination due to somatic loss of 53BP1. Importantly, PARPi resistance was minimized by long-term treatment with the novel PARP inhibitor AZD2461, which is a poor P-glycoprotein substrate. Together, our data suggest that restoration of homologous recombination is an important mechanism for PARPi resistance in BRCA1-deficient mammary tumors and that the risk of relapse of BRCA1-deficient tumors can be effectively minimized by using optimized PARP inhibitors. SIGNIFICANCE: In this study, we show that loss of 53BP1 causes resistance to PARP inhibition in mouse mammary tumors that are deficient in BRCA1. We hypothesize that low expression or absence of 53BP1 also reduces the response of patients with BRCA1-deficient tumors to PARP inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/uso terapêutico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Piperidinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Animais , Proteína BRCA1/genética , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Mutação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
Cancer Cell ; 20(6): 797-809, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22172724

RESUMO

Hereditary breast cancers are frequently caused by germline BRCA1 mutations. The BRCA1(C61G) mutation in the BRCA1 RING domain is a common pathogenic missense variant, which reduces BRCA1/BARD1 heterodimerization and abrogates its ubiquitin ligase activity. To investigate the role of BRCA1 RING function in tumor suppression and therapy response, we introduced the Brca1(C61G) mutation in a conditional mouse model for BRCA1-associated breast cancer. In contrast to BRCA1-deficient mammary carcinomas, tumors carrying the Brca1(C61G) mutation responded poorly to platinum drugs and PARP inhibition and rapidly developed resistance while retaining the Brca1(C61G) mutation. These findings point to hypomorphic activity of the BRCA1-C61G protein that, although unable to prevent tumor development, affects response to therapy.


Assuntos
Proteína BRCA1/genética , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/uso terapêutico , Apoptose , Proteína BRCA1/metabolismo , Carcinoma/tratamento farmacológico , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Proliferação de Células , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Técnicas de Inativação de Genes , Instabilidade Genômica , Queratina-8/metabolismo , Masculino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transplante de Neoplasias , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Estrutura Terciária de Proteína , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transplante Heterólogo , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
J Pathol ; 224(1): 10-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21404276

RESUMO

PALB2 interacts with BRCA1 and BRCA2 in supercomplexes involved in DNA repair via homologous recombination. Heterozygous germline mutations in PALB2 confer a moderate risk of breast cancer, while biallelic PALB2 mutations are linked to a severe form of Fanconi anaemia characterized by early childhood solid tumours and severe chromosomal instability. In contrast to BRCA1- or BRCA2-associated cancers, breast tumours in heterozygous PALB2 mutation carriers do not show loss of the wild-type allele, suggesting PALB2 might be haploinsufficient for tumour suppression. To study the role of PALB2 in development and tumourigenesis, we have generated Palb2(GT) mouse mutants using a gene trap approach. Whereas Palb2(GT/GT) homozygous mutant embryos died at mid-gestation due to massive apoptosis, Palb2(GT/+) heterozygous mice were viable and did not show any obvious abnormalities. Deletion of p53 alleviated the phenotype of Palb2(GT/GT) embryos, but did not rescue embryonic lethality. In addition, loss of p53 did not significantly collaborate with Palb2 heterozygosity in tumourigenesis in heterozygous or homozygous p53 knockout mice. Tumours arising in Palb2(GT/+) ;p53(+/-) or Palb2(GT/+) ;p53(-/-) compound mutant mice retained the wild-type Palb2 allele and did not display increased genomic instability.


Assuntos
Transformação Celular Neoplásica/genética , Desenvolvimento Embrionário/fisiologia , Haploinsuficiência/genética , Proteína Supressora de Tumor p53/deficiência , Proteínas Supressoras de Tumor/deficiência , Animais , Apoptose/genética , Perda do Embrião/genética , Desenvolvimento Embrionário/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Deleção de Genes , Genes p53 , Instabilidade Genômica/genética , Heterozigoto , Linfoma/genética , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Knockout , Neoplasias do Timo/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
11.
Breast Cancer Res ; 11(4): R63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19709408

RESUMO

INTRODUCTION: Treatment of breast cancer is becoming more individualized with the recognition of tumor subgroups that respond differently to available therapies. Breast cancer 1 gene (BRCA1)-deficient tumors are usually of the basal subtype and associated with poor survival rates, highlighting the need for more effective therapy. METHODS: We investigated a mouse model that closely mimics breast cancer arising in BRCA1-mutation carriers to better understand the molecular mechanism of tumor progression and tested whether targeting of the Polycomb-group protein EZH2 would be a putative therapy for BRCA1-deficient tumors. RESULTS: Gene expression analysis demonstrated that EZH2 is overexpressed in BRCA1-deficient mouse mammary tumors. By immunohistochemistry we show that an increase in EZH2 protein levels is also evident in tumors from BRCA1-mutation carriers. EZH2 is responsible for repression of genes driving differentiation and could thus be involved in the undifferentiated phenotype of these tumors. Importantly, we show that BRCA1-deficient cancer cells are selectively dependent on their elevated EZH2 levels. In addition, a chemical inhibitor of EZH2, 3-deazaneplanocin A (DZNep), is about 20-fold more effective in killing BRCA1-deficient cells compared to BRCA1-proficient mammary tumor cells. CONCLUSIONS: We demonstrate by specific knock-down experiments that EZH2 overexpression is functionally relevant in BRCA1-deficient breast cancer cells. The effectiveness of a small molecule inhibitor indicates that EZH2 is a druggable target. The overexpression of EZH2 in all basal-like breast cancers warrants further investigation of the potential for targeting the genetic make-up of this particular breast cancer type.


Assuntos
Adenosina/análogos & derivados , Proteína BRCA1/deficiência , Neoplasias da Mama/genética , Genes BRCA1 , Histona-Lisina N-Metiltransferase/fisiologia , Adenosina/farmacologia , Animais , Proteína BRCA1/genética , Proteína BRCA1/fisiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Reparo do DNA/genética , Sistemas de Liberação de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/biossíntese , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Mutação , Complexo Repressor Polycomb 2 , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/fisiologia
12.
Clin Cancer Res ; 14(12): 3916-25, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18559613

RESUMO

PURPOSE: To assess efficacy of the novel, selective poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor AZD2281 against newly established BRCA2-deficient mouse mammary tumor cell lines and to determine potential synergy between AZD2281 and cisplatin. EXPERIMENTAL DESIGN: We established and thoroughly characterized a panel of clonal cell lines from independent BRCA2-deficient mouse mammary tumors and BRCA2-proficient control tumors. Subsequently, we assessed sensitivity of these lines to conventional cytotoxic drugs and the novel PARP inhibitor AZD2281. Finally, in vitro combination studies were done to investigate interaction between AZD2281 and cisplatin. RESULTS: Genetic, transcriptional, and functional analyses confirmed the successful isolation of BRCA2-deficient and BRCA2-proficient mouse mammary tumor cell lines. Treatment of these cell lines with 11 different anticancer drugs or with gamma-irradiation showed that AZD2281, a novel and specific PARP inhibitor, caused the strongest differential growth inhibition of BRCA2-deficient versus BRCA2-proficient mammary tumor cells. Finally, drug combination studies showed synergistic cytotoxicity of AZD2281 and cisplatin against BRCA2-deficient cells but not against BRCA2-proficient control cells. CONCLUSION: We have successfully established the first set of BRCA2-deficient mammary tumor cell lines, which form an important addition to the existing preclinical models for BRCA-mutated breast cancer. The exquisite sensitivity of these cells to the PARP inhibitor AZD2281, alone or in combination with cisplatin, provides strong support for AZD2281 as a novel targeted therapeutic against BRCA-deficient cancers.


Assuntos
Proteína BRCA2/genética , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Neoplasias Mamárias Animais/tratamento farmacológico , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia , Feminino , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/efeitos da radiação , Inibidores de Poli(ADP-Ribose) Polimerases , Rad51 Recombinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...