Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5727, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714830

RESUMO

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquire early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogram and reverse the immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells of healthy donors or metastatic female breast cancer patients, induce robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a promising therapy for solid tumors.


Assuntos
Neoplasias da Mama , Receptores de Antígenos Quiméricos , Humanos , Feminino , Animais , Camundongos , Leucócitos Mononucleares , Microambiente Tumoral , Neoplasias da Mama/terapia , Modelos Animais de Doenças , Imunossupressores , Linfócitos T
2.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722058

RESUMO

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Citotoxicidade Imunológica , Ácidos Graxos , Metabolismo dos Lipídeos , Neoplasias/terapia , Linfócitos T Citotóxicos
3.
Res Sq ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865255

RESUMO

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumor is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach massively reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquired early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogrammed and reversed immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells (PBMC) of healthy or metastatic breast cancer patients, induced robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a novel therapy for solid tumor.

4.
Front Oncol ; 12: 939166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110930

RESUMO

Chondrosarcoma is a common primary bone malignancy whose phenotype increases with its histologic grade. They are relatively resistant to chemotherapy and radiation therapy limiting curative options for disseminated disease. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is highly expressed across various human cancers, including chondrosarcoma, and has restricted distribution in healthy tissues, making it an attractive target for the antibody-based therapy. CSPG4 specific chimeric antigen receptor (CAR) T cell therapies have been shown to be effective in treating other cancers such as melanoma and triple negative breast cancer. The goal of this study was to assess the prevalence of CSPG4 in human chondrosarcoma and to assess the efficacy of CSPG4 specific CAR T cells in lysing chondrosarcoma cells in vitro. Using immunohistochemistry (IHC), we stained a tissue microarray containing primary conventional and dedifferentiated chondrosarcoma from 76 patients with CSPG4 specific monoclonal antibodies (mAbs). In addition, we incubated 2 chondrosarcoma cell lines with CSPG4-targeting CAR T cells and subsequently evaluated cell survival. Our results showed medium to high expression of CSPG4 in 29 of 41 (71%) conventional chondrosarcoma tumors and in 3 of 20 (15%) dedifferentiated chondrosarcoma tumors. CSPG4 expression showed a positive association with time to metastasis and survival in both subtypes. CSPG4 CAR T treated cell lines showed a lysis of respectively >80% and 70% demonstrating CSPG4-targeted CAR T cells effective in killing CSPG4-positive chondrosarcoma tumors.

5.
Front Oncol ; 12: 913736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912209

RESUMO

Background: Sorafenib, a kinase inhibitor, is a standard treatment for advanced hepatocellular carcinoma (HCC) but provides only a limited survival benefit. Disulfiram (DSF), a drug for treating alcoholism and a chelator of copper (Cu), forms a complex with Cu (DSF/Cu). DSF/Cu is a potent inducer of autophagic apoptosis of cancer stem cells, which can demonstrate drug resistance. Thus, we hypothesized that DSF/Cu could increase the sensitivity of HCC cells to sorafenib by targeting hepatic cancer stem cells. Methods: The synergistic effect of DSF/Cu and sorafenib on human HCC cell lines was assessed by cell viability MTT assay. Changes in stemness gene expression in HCC cells were investigated by assessing the presence of hepatic cancer stem cells (HCSCs) (defined as ALDH+ cells) using flow cytometry, sphere formation ability as an index of in vitro tumorigenicity, and expression of stemness gene-encoded proteins by western blot. Autophagic apoptosis and the ERK signaling pathway were also assessed by western blot. Most importantly, the in vivo anti-tumor efficacy of DSF/Cu and sorafenib was tested using orthotopic HCC xenografts in mice. Results: Compared with sorafenib alone, DSF/Cu + sorafenib synergistically inhibited proliferation of all HCC cell lines, decreased the stemness of HCC cells, and increased the autophagy and apoptosis of HCC cells. The mechanism by which DSF/Cu mediated these phenomena with sorafenib was sustained activation of the ERK pathway. The combination of DSF/Cu (formed with endogenous Cu2+) and sorafenib was significantly more effective than sorafenib alone in inhibiting the growth of orthotopic HCC xenografts in mice. This in vivo anti-tumor efficacy was associated with decreased stemness in treated HCC tumors. Conclusions: DSF/Cu and sorafenib can synergistically and effectively treat HCC by targeting HCSCs in vitro and in vivo. Our data provide a foundation for clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...