Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32092005

RESUMO

Hyperspectral image unmixing has proven to be a useful technique to interpret hyperspectral data, and is a prolific research topic in the community. Most of the approaches used to perform linear unmixing are based on convex geometry concepts, because of the strong geometrical structure of the linear mixing model. However, many algorithms based on convex geometry are still used in spite of the underlying model not considering the intra-class variability of the materials. A natural question is to wonder to what extent these concepts and tools (Intrinsic Dimensionality estimation, endmember extraction algorithms, pixel purity) are still relevant when spectral variability comes into play. In this paper, we first analyze their robustness in a case where the linear mixing model holds in each pixel, but the endmembers vary in each pixel according to a prescribed variability model. In the light of this analysis, we propose an integrated unmixing chain which tries to adress the shortcomings of the classical tools used in the linear case, based on our previously proposed extended linear mixing model. We show the interest of the proposed approach on simulated and real datasets.

2.
IEEE Trans Image Process ; 28(7): 3435-3450, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30716036

RESUMO

Hyperspectral images provide much more information than conventional imaging techniques, allowing a precise identification of the materials in the observed scene, but because of the limited spatial resolution, the observations are usually mixtures of the contributions of several materials. The spectral unmixing problem aims at recovering the spectra of the pure materials of the scene (endmembers), along with their proportions (abundances) in each pixel. In order to deal with the intra-class variability of the materials and the induced spectral variability of the endmembers, several spectra per material, constituting endmember bundles, can be considered. However, the usual abundance estimation techniques do not take advantage of the particular structure of these bundles, organized into groups of spectra. In this paper, we propose to use group sparsity by introducing mixed norms in the abundance estimation optimization problem. In particular, we propose a new penalty, which simultaneously enforces group and within-group sparsity, to the cost of being nonconvex. All the proposed penalties are compatible with the abundance sum-to-one constraint, which is not the case with traditional sparse regression. We show on simulated and real datasets that well-chosen penalties can significantly improve the unmixing performance compared to classical sparse regression techniques or to the naive bundle approach.

3.
IEEE Trans Image Process ; 25(8): 3890-905, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27305674

RESUMO

Spectral unmixing is one of the main research topics in hyperspectral imaging. It can be formulated as a source separation problem, whose goal is to recover the spectral signatures of the materials present in the observed scene (called endmembers) as well as their relative proportions (called fractional abundances), and this for every pixel in the image. A linear mixture model (LMM) is often used for its simplicity and ease of use, but it implicitly assumes that a single spectrum can be completely representative of a material. However, in many scenarios, this assumption does not hold, since many factors, such as illumination conditions and intrinsic variability of the endmembers, induce modifications on the spectral signatures of the materials. In this paper, we propose an algorithm to unmix hyperspectral data using a recently proposed extended LMM. The proposed approach allows a pixelwise spatially coherent local variation of the endmembers, leading to scaled versions of reference endmembers. We also show that the classic nonnegative least squares, as well as other approaches to tackle spectral variability can be interpreted in the framework of this model. The results of the proposed algorithm on two different synthetic datasets, including one simulating the effect of topography on the measured reflectance through physical modelling, and on two real data sets, show that the proposed technique outperforms other methods aimed at addressing spectral variability, and can provide an accurate estimation of endmember variability along the scene because of the scaling factors estimation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...