Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neurosci Lett ; 761: 136123, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34293418

RESUMO

BACKGROUND: Epilepsy is a disorder characterized by recurrent seizures that affects 1% of the population. However, the neurochemical alterations observed in epilepsy are not fully understood. There are different animal models of epilepsy, such as genetic or drug induced. In the present study, we utilize Wistar Audiogenic Rats (WAR), a murine strain that develops seizures in response to high intensity audio stimulation, in order to investigate abnormalities in glutamatergic and GABAergic systems. METHODS: Synaptosomes and glial plasmalemmal vesicles were prepared from hippocampus and cortex, respectively. Glutamate and GABA release and uptake were assayed by monitoring the fluorescence and using L-[3H]-radiolabeled compounds. Glutamate and calcium concentration in the synaptosomes were also measured. The expression of neuronal calcium sensor 1 (NCS-1) was determined by western blot. RESULTS: Glutamate and GABA release evoked by KCl was decreased in WAR compared to control Wistar rats. Calcium independent release was not considerably different in both groups. The total amount of glutamate of synaptosomes, as well as glutamate uptake by synaptosomes and GPV were also decreased in WAR in comparison with the controls. In addition, [Ca2+]i of hippocampal synaptosomes, as well as NCS-1 expression in the hippocampus, were increased in WAR in comparison with controls. CONCLUSION: In conclusion, our results suggest that WAR have important alterations in the glutamatergic and GABAergic pathways, as well as an increased expression of NCS-1 in the hippocampus and inferior colliculus. These alterations may be linked to the spreading of hyperexcitability and recruitment of various brain regions.


Assuntos
Hipocampo/metabolismo , Convulsões/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Wistar , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
PLoS One ; 12(4): e0175041, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28376104

RESUMO

Increases in nuclear calcium concentration generate specific biological outcomes that differ from those resulting from increased cytoplasmic calcium. Nuclear calcium effects on tumor cell proliferation are widely appreciated; nevertheless, its involvement in other steps of tumor progression is not well understood. Therefore, we evaluated whether nuclear calcium is essential in other additional stages of tumor progression, including key steps associated with the formation of the primary tumor or with the metastatic cascade. We found that nuclear calcium buffering impaired 4T1 triple negative breast cancer growth not just by decreasing tumor cell proliferation, but also by enhancing tumor necrosis. Moreover, nuclear calcium regulates tumor angiogenesis through a mechanism that involves the upregulation of the anti-angiogenic C-X-C motif chemokine 10 (CXCL10-IP10). In addition, nuclear calcium buffering regulates breast tumor cell motility, culminating in less cell invasion, likely due to enhanced vinculin expression, a focal adhesion structural protein. Together, our results show that nuclear calcium is essential for triple breast cancer angiogenesis and cell migration and can be considered as a promising strategic target for triple negative breast cancer therapy.


Assuntos
Sinalização do Cálcio , Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Quimiocina CXCL10/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/genética , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/patologia
3.
Psychoneuroendocrinology ; 57: 14-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25867995

RESUMO

It is well known that estradiol (E2) replacement therapy is effective on restoring memory deficits and mood disorders that may occur during natural menopause or after surgical ovarian removal (ovariectomy, OVX). However, it is still unknown the effectiveness of acute and localized E2 administration on the effects of chronic OVX. Here we tested the hypothesis that the intra-hippocampal E2 infusion, as well as specific agonists of estrogen receptors (ERs) alpha (ERα) and beta (ERß), are able to mend novel object recognition (NOR) memory deficit and depressive-like behavior caused by 12 weeks of OVX. We found that both ERα and ERß activation, at earlier stages of consolidation, recovered the NOR memory deficit caused by 12 w of OVX. Conversely, only the ERß activation was effective in decreasing the depressive-like behavior caused by 12 w of OVX. Furthermore, we investigated the effect of OVX on hippocampal volume and ERs expression. The structural MRI showed no alteration in the hippocampus volume of 12 w OVX animals. Interestingly, ERα expression in the hippocampus decreased after one week of OVX, but increased in 12 w OVX animals. Overall, we may conclude that the chronic estrogen deprivation, induced by 12 weeks of OVX, modulates the hippocampal ERα expression and induces NOR memory deficit and depressive-like behaviors. Nonetheless, it is noteworthy that the acute effects of E2 on NOR memory and depressive-like behavior are still apparent even after 12 weeks of OVX.


Assuntos
Depressão/etiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Ovariectomia/efeitos adversos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
4.
Toxicol Sci ; 137(1): 147-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105889

RESUMO

Severe scorpion envenoming (SSE) is more frequent in children and is characterized by systemic dysfunctions with a mortality rate of up to 9%. Recent evidence shows that the central nervous system (CNS) plays a key role in triggering the cascade of symptoms present in SSE. The age-dependent role of the CNS in SSE lethality may be summarized in 3 hypotheses: (1) the shown increased blood brain barrier permeability of infants to the toxins would especially and primarily compromise neurovegetative control areas, (2) the neurons within these areas have high affinity to the toxins, and (3) the neurovascular interaction is such that SSE metabolically compromises proper function of toxin-targeted areas. A pharmacological magnetic resonance imaging paradigm was used to evaluate localized hemodynamic changes in relative cerebral blood volume (rCBV) for 30 min after the injection of TsTX, the most lethal toxin from the venom of the Tityus serrulatus scorpion. The brainstem showed significant rCBV reduction 1 min after TsTX administration, whereas rostral brain areas had delayed increase in rCBV (confirmed by laser Doppler measurements of cortical cerebral blood flow). Moreover, metabolic activity by 14C-2-deoxyglucose autoradiography showed the highest relative increase at the brainstem. To test whether TsTX has high affinity to brainstem neurons, the lateral ventricle was injected with Alexa Fluor 568 TsTX. Although some neurons showed intense fluorescence, the labeling pattern suggests that specific neurons were targeted. Altogether, these results suggest that brainstem areas involved in neurovegetative control are most likely within the primary structures triggering the cascade of symptoms present in SSE.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Picadas de Escorpião/patologia , Venenos de Escorpião/toxicidade , Escorpiões , Fatores Etários , Animais , Velocidade do Fluxo Sanguíneo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Tronco Encefálico/irrigação sanguínea , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Permeabilidade Capilar/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Desoxiglucose/metabolismo , Modelos Animais de Doenças , Hemodinâmica/efeitos dos fármacos , Fluxometria por Laser-Doppler , Imageamento por Ressonância Magnética , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Fatores de Tempo
5.
J Neurochem ; 123(2): 317-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22913494

RESUMO

Although it is well known that regular exercise may promote neuroprotection, the mechanisms underlying this effect are still not fully understood. We investigated if swim training promotes neuroprotection by potentiating antioxidant pathways, thereby decreasing the effects of oxidative stress on glutamate and nitric oxide release. Male Wistar rats (n=36) were evenly randomized into a trained group (TRA) (5 days/week, 8 weeks, 30 min) and a sedentary group (SED). Forty-eight hours after the last session of exercise, animals were killed and brain was collected for in vitro ischemia. Cortical slices were divided into two groups: a group in which oxidative stress was induced by oxygen and glucose deprivation (OGD), and a group of non-deprived controls (nOGD). Interestingly, exercise by itself increased superoxide dismutase activity (nOGD, SED vs. TRA animals) with no effect on pro-oxidative markers. In fact, TRA-OGD slices showed lowered levels of lactate dehydrogenase when compared with SED-OGD controls, reinforcing the idea that exercise affords a neuroprotective effect. We also demonstrated that exercise decreased glutamate and nitrite release as well as lipid membrane damage in the OGD cortical slices. Our data suggest that under conditions of metabolic stress, swim training prevents oxidative damage caused by glutamate and nitric oxide release.


Assuntos
Córtex Cerebral/metabolismo , Glucose/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Animais , Hipóxia Celular/fisiologia , Córtex Cerebral/patologia , Glucose/deficiência , Masculino , Técnicas de Cultura de Órgãos , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar
6.
Brain Res Bull ; 88(4): 385-91, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521426

RESUMO

Physical activity has been proposed as a behavioral intervention that improves learning and memory; nevertheless, the mechanisms underlying these health benefits are still not well understood. Neuronal Calcium Sensor-1 (NCS-1) is a member of a superfamily of proteins that respond to local Ca(2+) changes shown to have an important role in learning and memory. The aim of the present study was to investigate the effects of swimming training on NCS-1 levels in the rat brain after accessing cognitive performance. Wistar rats were randomly assigned to sedentary (SG) or exercised groups (EG). The EG was subject to forced swimming activity, 30 min/day, 5 days/week, during 8 weeks. Progressive load trials were performed in the first and last week in order to access the efficiency of the training. After the 8 week training protocol, memory performance was evaluated by the novel object preference and object location tasks. NCS-1 levels were measured in the cortex and hippocampus using immunoblotting. The EG performed statistically better for the spatial short-term memory (0.73 ± 0.01) when compared to the SG (0.63 ± 0.02; P<0.05). No statistically significant exercise-effect was observed in the novel object preference task (SG 0.65 ± 0.02 and EG 0.68 ± 0.02; p>0.05). In addition, chronic exercise promoted a significant increase in hippocampal NCS-1 levels (1.8 ± 0.1) when compared to SG (1.17 ± 0.08; P<0,05), but had no effect on cortical NCS-1 levels (SG 1.6 ± 0.1 and EG 1.5 ± 0.1; p>0.05). Results suggest that physical exercise would modulate the state of the neural network regarding its potential for plastic changes: physical exercise could be modulating NCS-1 in an activity dependent manner, for specific neural substrates, thus enhancing the cellular/neuronal capability for plastic changes in these areas; which, in turn, would differentially effect ORM task performance for object recognition and displacement.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Proteínas Sensoras de Cálcio Neuronal/biossíntese , Neuropeptídeos/biossíntese , Condicionamento Físico Animal/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Immunoblotting , Masculino , Ratos , Ratos Wistar , Natação
7.
Arq. bras. endocrinol. metab ; 46(2): 203-207, abr. 2002. ilus, tab
Artigo em Português | LILACS | ID: lil-311032

RESUMO

Na criança, o hipotireoidismo é uma das causas raras de puberdade precoce. Relatamos o caso de uma criança que desenvolveu puberdade incompleta (sem ativaçäo do eixo hipotálamo-hipofisário, demonstrada por resposta negativa ao teste de estímulo com LH-RH), hiperprolactinemia e reduçäo da velocidade de crescimento conseqüentes ao hipotireoidismo primário. O tratamento da doença tireoidiana com levotiroxina sódica levou a regressäo do desenvolvimento puberal e retomada do crescimento.


Assuntos
Humanos , Feminino , Criança , Hipotireoidismo , Puberdade Precoce , Diagnóstico Diferencial , Hipotireoidismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...