Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(7): 1536-1557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233998

RESUMO

For a long time, it has been assumed that dopaminergic (DA) neurons in both the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) uniformly respond to rewarding and aversive stimuli by either increasing or decreasing their activity, respectively. This response was believed to signal information about the perceived stimuli's values. The identification of VTA&SNc DA neurons that are excited by both rewarding and aversive stimuli has led to the categorisation of VTA&SNc DA neurons into two subpopulations: one signalling the value and the other signalling the salience of the stimuli. It has been shown that the general state of the brain can modulate the electrical activity of VTA&SNc DA neurons, but it remains unknown whether this factor may also influence responses to aversive stimuli, such as a footshock (FS). To address this question, we have recorded the responses of VTA&SNc DA neurons to FSs across cortical activation and slow wave activity brain states in urethane-anaesthetised rats. Adding to the knowledge of aversion signalling by midbrain DA neurons, we report that significant proportion of VTA&SNc DA neurons can change their responses to an aversive stimulus in a brain state-dependent manner. The majority of these neurons decreased their activity in response to FS during cortical activation but switched to increasing it during slow wave activity. It can be hypothesised that this subpopulation of DA neurons may be involved in the 'dual signalling' of both the value and the salience of the stimuli, depending on the general state of the brain.


Assuntos
Anestesia , Neurônios Dopaminérgicos , Ratos , Animais , Uretana/farmacologia , Substância Negra/fisiologia , Mesencéfalo , Área Tegmentar Ventral/fisiologia , Anestésicos Intravenosos
2.
Eur J Neurosci ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479859

RESUMO

Drug seeking is associated with the ventral tegmental area (VTA) dopaminergic (DA) activity. Previously, we have shown that brief optogenetic inhibition of VTA DA neurons with 1 s pulses delivered every 9 s attenuates cocaine seeking under extinction conditions in rats without producing overt signs of dysphoria or locomotor sedation. Whether recruitment of neuronal pathways inhibiting VTA neuronal activity would suppress drug seeking remains unknown. Here, we asked if optogenetic stimulation of the lateral habenula (LHb) efferents in the rostromedial tegmental nucleus (RMTg) as well as RMTg efferents in VTA would reduce drug seeking. To investigate this, we measured how recruitment of elements of this inhibitory pathway affects cocaine seeking in male rats under extinction conditions. The effectiveness of brief optogenetic manipulations was confirmed electrophysiologically at the level of electrical activity of VTA DA neurons. Real-time conditioned place aversion (RT-CPA) and open field tests were performed to control for potential dysphoric/sedating effects of brief optogenetic stimulation of LHb-RMTg-VTA circuitry. Optogenetic stimulation of either RMTg or LHb inhibited VTA DAergic neuron firing, whereas similar stimulation of RMTg efferents in VTA or LHb efferents in RMTg reduced cocaine seeking under extinction conditions. Moreover, stimulation of LHb-RMTg efferents produced an effect that was maintained 24 h later, during cocaine seeking test without stimulation. This effect was specific, as brief optogenetic stimulation did not affect locomotor activity and was not aversive. Our results indicate that defined inhibitory pathways can be recruited to inhibit cocaine seeking, providing potential new targets for non-pharmacological treatment of drug craving.

3.
Front Physiol ; 13: 932378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812323

RESUMO

Level of motivation, responsiveness to rewards and punishment, invigoration of exploratory behaviours, and motor performance are subject to daily fluctuations that emerge from circadian rhythms in neuronal activity of the midbrain's dopaminergic system. While endogenous circadian rhythms are weak in the ventral tegmental area and substantia nigra pars compacta, daily changes in expression of core clock genes, ion channels, neurotransmitter receptors, dopamine-synthesising enzymes, and dopamine transporters, accompanied by changes in electrical activity, are readily observed in these nuclei. These processes cause dopamine levels released in structures innervated by midbrain dopaminergic neurons (e.g., the striatum) to oscillate in a circadian fashion. Additionally, growing evidence show that the master circadian clock located in the suprachiasmatic nucleus of the hypothalamus (SCN) rhythmically influences the activity of the dopaminergic system through various intermediate targets. Thus, circadian changes in the activity of the dopaminergic system and concomitant dopamine release observed on a daily scale are likely to be generated both intrinsically and entrained by the master clock. Previous studies have shown that the information about the value and salience of stimuli perceived by the animal is encoded in the neuronal activity of brain structures innervating midbrain dopaminergic centres. Some of these structures themselves are relatively autonomous oscillators, while others exhibit a weak endogenous circadian rhythm synchronised by the SCN. Here, we place the dopaminergic system as a hub in the extensive network of extra-SCN circadian oscillators and discuss the possible consequences of its daily entrainment for animal physiology and behaviour.

4.
Front Cell Neurosci ; 16: 836116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281300

RESUMO

The medial septum (MS) is critically involved in theta rhythmogenesis and control of the hippocampal network, with which it is reciprocally connected. MS activity is influenced by brainstem structures, including the stress-sensitive, nucleus incertus (NI), the main source of the neuropeptide relaxin-3 (RLN3). In the current study, we conducted a comprehensive neurochemical and electrophysiological characterization of NI neurons innervating the MS in the rat, by employing classical and viral-based neural tract-tracing and electrophysiological approaches, and multiplex fluorescent in situ hybridization. We confirmed earlier reports that the MS is innervated by RLN3 NI neurons and documented putative glutamatergic (vGlut2 mRNA-expressing) neurons as a relevant NI neuronal population within the NI-MS tract. Moreover, we observed that NI neurons innervating MS can display a dual phenotype for GABAergic and glutamatergic neurotransmission, and that 40% of MS-projecting NI neurons express the corticotropin-releasing hormone-1 receptor. We demonstrated that an identified cholecystokinin (CCK)-positive NI neuronal population is part of the NI-MS tract, and that RLN3 and CCK NI neurons belong to a neuronal pool expressing the calcium-binding proteins, calbindin and calretinin. Finally, our electrophysiological studies revealed that MS is innervated by A-type potassium current-expressing, type I NI neurons, and that type I and II NI neurons differ markedly in their neurophysiological properties. Together these findings indicate that the MS is controlled by a discrete NI neuronal network with specific electrophysiological and neurochemical features; and these data are of particular importance for understanding neuronal mechanisms underlying the control of the septohippocampal system and related behaviors.

5.
Addict Biol ; 25(6): e12826, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31478293

RESUMO

Preclinical studies strongly suggest that cocaine seeking depends on the neuronal activity of the ventral tegmental area (VTA) and phasic dopaminergic (DA) signaling. Notably, VTA pharmacological inactivation or dopamine receptor blockade in the forebrain may induce behavioral inhibition in general and acute aversive states in particular, thus reducing cocaine seeking indirectly. Such artifacts hinder successful translation of these findings in clinical studies and practice. Here, we aimed to evaluate if dynamic VTA manipulations effectively reduce cocaine seeking. We used male tyrosine hydroxylase (TH) IRES-Cre+ rats along with optogenetic tools to inhibit directly and briefly VTA DA neurons during conditioned stimulus (CS)-induced cocaine seeking under extinction conditions. The behavioral effects of optogenetic inhibition were also assessed in the real-time dynamic place aversion, conditioned place aversion, and CS-induced food-seeking tests. We found that brief and nondysphoric/nonsedative pulses of VTA photo-inhibition (1 s every 9 s, ie, for 10% of time) attenuated CS-induced cocaine seeking under extinction conditions in rats expressing archaerhodopsin selectively on the TH+ neurons. Furthermore, direct inhibition of the VTA DA activity reduced CS-induced cocaine seeking 24 hours after photo-modulation. Importantly, such effect appears to be selective for cocaine seeking as similar inhibition of the VTA DA activity had no effect on CS-induced food seeking. Thus, briefly inhibiting VTA DA activity during CS-induced cocaine seeking drastically and selectively reduces seeking without behavioral artifacts such as sedation or dysphoria. Our results point to the therapeutic possibilities of coupling nonpharmacologic treatments with extinction training in reducing cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Neurônios Dopaminérgicos/fisiologia , Comportamento de Procura de Droga/fisiologia , Área Tegmentar Ventral/fisiopatologia , Animais , Cocaína/toxicidade , Condicionamento Operante , Extinção Psicológica , Masculino , Inibição Neural , Optogenética , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...