Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 4: 17-26, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28344988

RESUMO

Analysis of sites of newly integrated DNA in cellular genomes is important to several fields, but methods for analyzing and visualizing these datasets are still under development. Here, we describe tools for data analysis and visualization that take as input integration site data from our INSPIIRED pipeline. Paired-end sequencing allows inference of the numbers of transduced cells as well as the distributions of integration sites in target genomes. We present interactive heatmaps that allow comparison of distributions of integration sites to genomic features and that support numerous user-defined statistical tests. To summarize integration site data from human gene therapy samples, we developed a reproducible report format that catalogs sample population structure, longitudinal dynamics, and integration frequency near cancer-associated genes. We also introduce a novel summary statistic, the UC50 (unique cell progenitors contributing the most expanded 50% of progeny cell clones), which provides a single number summarizing possible clonal expansion. Using these tools, we characterize ongoing longitudinal characterization of a patient from the first trial to treat severe combined immunodeficiency-X1 (SCID-X1), showing successful reconstitution for 15 years accompanied by persistence of a cell clone with an integration site near the cancer-associated gene CCND2. Software is available at https://github.com/BushmanLab/INSPIIRED.

2.
Mol Ther Methods Clin Dev ; 4: 39-49, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28344990

RESUMO

Integration of new DNA into cellular genomes mediates replication of retroviruses and transposons; integration reactions have also been adapted for use in human gene therapy. Tracking the distributions of integration sites is important to characterize populations of transduced cells and to monitor potential outgrow of pathogenic cell clones. Here, we describe a pipeline for quantitative analysis of integration site distributions named INSPIIRED (integration site pipeline for paired-end reads). We describe optimized biochemical steps for site isolation using Illumina paired-end sequencing, including new technology for suppressing recovery of unwanted contaminants, then software for alignment, quality control, and management of integration site sequences. During library preparation, DNAs are broken by sonication, so that after ligation-mediated PCR the number of ligation junction sites can be used to infer abundance of gene-modified cells. We generated integration sites of known positions in silico, and we describe optimization of sample processing parameters refined by comparison to truth. We also present a novel graph-theory-based method for quantifying integration sites in repeated sequences, and we characterize the consequences using synthetic and experimental data. In an accompanying paper, we describe an additional set of statistical tools for data analysis and visualization. Software is available at https://github.com/BushmanLab/INSPIIRED.

3.
mBio ; 7(2): e00322, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27025251

RESUMO

UNLABELLED: Fecal microbiota transplantation (FMT) is a highly effective treatment for refractoryClostridium difficileinfections. However, concerns persist about unwanted cotransfer of pathogenic microbes such as viruses. Here we studed FMT from a single healthy human donor to three pediatric ulcerative colitis patients, each of whom received a course of 22 to 30 FMT treatments. Viral particles were purified from donor and recipient stool samples and sequenced; the reads were then assembled into contigs corresponding to viral genomes or partial genomes. Transfer of selected viruses was confirmed by quantitative PCR. Viral contigs present in the donor could be readily detected in recipients, with up to 32 different donor viral contigs appearing in a recipient sample. Reassuringly, none of these were viruses are known to replicate on human cells. Instead, viral contigs either scored as bacteriophage or could not be attributed taxonomically, suggestive of unstudied phage. The two most frequently transferred gene types were associated with temperate-phage replication. In addition, members ofSiphoviridae, the group of typically temperate phages that includes phage lambda, were found to be transferred with significantly greater efficiency than other groups. On the basis of these findings, we propose that the temperate-phage replication style may promote efficient phage transfer between human individuals. In summary, we documented transfer of multiple viral lineages between human individuals through FMT, but in this case series, none were from viral groups known to infect human cells. IMPORTANCE: Transfer of whole communities of viruses between humans has rarely been studied but is of likely medical importance. Here we studied fecal microbiota transplantation (FMT), a highly successful treatment for relapsingClostridium difficileinfection and, potentially, other gastrointestinal (GI) diseases. We investigated the transfer of viral communities during FMT and documented transfer of multiple viral lineages between humans. None of these were viruses that replicated on animal cells or that are known to be pathogenic. We found that temperate bacteriophage, which form stable associations with their hosts, were significantly more likely to be transferred during FMT. This supports a model in which the viral temperate replication style may have evolved in part to support efficient viral transmission between environments.


Assuntos
Biodiversidade , Colite Ulcerativa/terapia , Transplante de Microbiota Fecal/efeitos adversos , Vírus/classificação , Vírus/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Vírus/genética
4.
Proc Natl Acad Sci U S A ; 109(9): 3335-40, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331900

RESUMO

Understanding the detailed mechanism of the activation of voltage-gated ion channels has been a problem of great current interest. Reliable molecular simulations of voltage effects present a major challenge because meaningful converging microscopic simulations are not yet available and macroscopic treatments involve major uncertainties regarding the dielectric constant used and other key features. The current work has overcome some of the above challenges by using our recently developed coarse-grained (CG) model in simulating the activation of the Kv1.2 channel. The CG model has allowed us to explore problems that cannot be addressed at present by fully microscopic simulations, while providing insights on some features that are not usually considered in continuum models, including the distribution of the electrolytes between the membrane and the electrodes during the activation process and thus the nature of the gating current. Furthermore, the clear connection to microscopic descriptions combined with the power of CG modeling offers a powerful tool for exploring the energy balance between the protein conformational energy and the interaction with the external potential in voltage-activated channels. Our simulations have reproduced the observed experimental trend of the gating charge and, most significantly, the correct trend in the free energies, where the closed channel is more stable at negative potential and the open channel is more stable at positive potential. Moreover, we provide a unique view of the activation landscape and the time dependence of the activation process.


Assuntos
Simulação por Computador , Ativação do Canal Iônico , Canal de Potássio Kv1.2/química , Modelos Químicos , Algoritmos , Regulação Alostérica , Eletrólitos , Canal de Potássio Kv1.2/metabolismo , Potenciais da Membrana , Modelos Moleculares , Potássio/metabolismo , Conformação Proteica , Soluções
5.
Biochim Biophys Acta ; 1818(2): 303-17, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21843502

RESUMO

The relationship between the membrane voltage and the gating of voltage activated ion channels and other systems have been a problem of great current interest. Unfortunately, reliable molecular simulations of external voltage effects present a major challenge, since meaningful converging microscopic simulations are not yet available and macroscopic treatments involve major uncertainties in terms of the dielectric used and other key features. This work extends our coarse grained (CG) model to simulations of membrane/protein systems under external potential. Special attention is devoted to a consistent modeling of the effect of external potential due to the electrodes, emphasizing semimacroscopic description of the electrolytes in the solution regions between the membranes and the electrodes, as well as the coupling between the combined potential from the electrodes plus the electrolytes and the protein ionized groups. We also provide a clear connection to microscopic treatment of the electrolytes and thus can explore possible conceptual problems that are hard to resolve by other current approaches. For example, we obtain a clear description of the charge distribution in the entire electrolyte system, including near the electrodes in membrane/electrodes systems (where continuum models do not seem to provide the relevant results). Furthermore, the present treatment provides an insight on the distribution of the electrolyte charges before and after equilibration across the membrane, and thus on the nature of the gating charge. The different aspects of the model have been carefully validated by considering problems ranging for the simple Debye-Huckel, and the Gouy-Chapman models to the evaluation of the electrolyte distribution between two electrodes, as well as the effect of extending the simulation system by periodic replicas. Overall the clear connection to microscopic descriptions combined with the power of the CG modeling seems to offer a powerful tool for exploring the balance between the protein conformational energy and the interaction with the external potential in voltage activated channels. To illustrate these features we present a preliminary study of the gating charge in the voltage activated Kv1.2 channel, using the actual change in the electrolyte charge distribution rather than the conventional macroscopic estimate. We also discuss other special features of the model, which include the ability to capture the effect of changes in the protonation states of the protein residues during the close to open voltage induced transition. This article is part of a Special Issue entitled: Membrane protein structure and function.


Assuntos
Canais Iônicos/química , Animais , Simulação por Computador , Eletrólitos/metabolismo , Humanos , Ativação do Canal Iônico , Canais Iônicos/fisiologia , Modelos Teóricos
6.
Proteins ; 79(12): 3469-84, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21910139

RESUMO

Electrostatic energies provide what is arguably the most effective tool for structure-function correlation of biological molecules. Here, we provide an overview of the current state-of-the-art simulations of electrostatic energies in macromolecules, emphasizing the microscopic perspective but also relating it to macroscopic approaches. We comment on the convergence issue and other problems of the microscopic models and the ways of keeping the microscopic physics while moving to semi-macroscopic directions. We discuss the nature of the protein dielectric "constants" reiterating our long-standing point that the dielectric "constants" in semi-macroscopic models depend on the definition and the specific treatment. The advances and the challenges in the field are illustrated considering different functional properties including pK(a)'s, redox potentials, ion and proton channels, enzyme catalysis, ligand binding, and protein stability. We emphasize the microscopic overcharging approach for studying pK(a) 's of internal groups in proteins and give a demonstration of power of this approach. We also emphasize recent advances in coarse grained models with a physically based electrostatic treatment and provide some examples including further directions in treating voltage activated ion channels.


Assuntos
Proteínas/química , Proteínas/metabolismo , Eletricidade Estática , Simulação por Computador , Canais Iônicos , Modelos Moleculares , Oxirredução , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
7.
Annu Rev Phys Chem ; 62: 41-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21034218

RESUMO

Recent years have witnessed an explosion in computational power, leading to attempts to model ever more complex systems. Nevertheless, there remain cases for which the use of brute-force computer simulations is clearly not the solution. In such cases, great benefit can be obtained from the use of physically sound simplifications. The introduction of such coarse graining can be traced back to the early usage of a simplified model in studies of proteins. Since then, the field has progressed tremendously. In this review, we cover both key developments in the field and potential future directions. Additionally, particular emphasis is given to two general approaches, namely the renormalization and reference potential approaches, which allow one to move back and forth between the coarse-grained (CG) and full models, as these approaches provide the foundation for CG modeling of complex systems.


Assuntos
Simulação por Computador , Modelos Químicos , Modelos Moleculares , Teoria Quântica , Fenômenos Biomecânicos , Biofísica , Computadores Moleculares , Transferência de Energia , Dobramento de Proteína
8.
J Phys Chem B ; 114(39): 12720-8, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20836533

RESUMO

Simulations of long time process in condensed phases, in general, and in biomolecules, in particular, present a major challenge that cannot be overcome at present by brute force molecular dynamics (MD) approaches. This work takes the renormalization method, intruded by us sometime ago, and establishes its reliability and potential in extending the time scale of molecular simulations. The validation involves a truncated gramicidin system in the gas phase. This system is small enough to allow for very long explicit simulations and sufficiently complex to present the physics of realistic ion channels. The renormalization approach is found to be reliable and arguably presents the first approach that allows one to exploit the otherwise problematic steered molecular dynamics (SMD) treatments in quantitative and meaningful studies. It is established that we can reproduce the long time behavior of large systems by using Langevin dynamics (LD) simulations of a renormalized implicit model. This is done without spending the enormous time needed to obtain such trajectories in the explicit system. The present study also provides a promising advance in accelerated evaluation of free energy barriers. This is done by adjusting the effective potential in the implicit model to reproduce the same passage time as that obtained in the explicit model under the influence of an external force. Here having a reasonable effective friction provides a way to extract the potential of mean force (PMF) without investing the time needed for regular PMF calculations. The renormalization approach, which is illustrated here in realistic calculations, is expected to provide a major help in studies of complex landscapes and in exploring long time dynamics of biomolecules.


Assuntos
Simulação de Dinâmica Molecular , Gases/química , Gramicidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...