Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009848

RESUMO

Eastern Africa preserves the most complete record of human evolution anywhere in the world but we have little knowledge of how long-term biogeographic dynamics in the region influenced hominin diversity and distributions. Here, we use spatial beta diversity analyses of mammal fossil records from the East African Rift System to reveal long-term biotic homogenization (increasing compositional similarity of faunas) over the last 6 Myr. Late Miocene and Pliocene faunas (~6-3 million years ago (Ma)) were largely composed of endemic species, with the shift towards biotic homogenization after ~3 Ma being driven by the loss of endemic species across functional groups and a growing number of shared grazing species. This major biogeographic transition closely tracks the regional expansion of grass-dominated ecosystems. Although grazers exhibit low beta diversity in open environments of the Early Pleistocene, the high beta diversity of Mio-Pliocene browsers and frugivores occurred in the context of extensive woody vegetation. We identify other key aspects of the Late Cenozoic biogeographic development of eastern Africa, their likely drivers and place the hominin fossil record in this context. Because hominins were undoubtedly influenced by many of the same factors as other eastern African mammals, this provides a new perspective on the links between environmental and human evolutionary histories.

2.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993642

RESUMO

Cas9 transgenic animals have drastically accelerated the discovery of novel immune modulators. But due to its inability to process its own CRISPR RNAs (crRNAs), simultaneous multiplexed gene perturbations using Cas9 remains limited, especially by pseudoviral vectors. Cas12a/Cpf1, however, can process concatenated crRNA arrays for this purpose. Here, we created conditional and constitutive LbCas12a knock-in transgenic mice. With these mice, we demonstrated efficient multiplexed gene editing and surface protein knockdown within individual primary immune cells. We showed genome editing across multiple types of primary immune cells including CD4 and CD8 T cells, B cells, and bone-marrow derived dendritic cells. These transgenic animals, along with the accompanying viral vectors, together provide a versatile toolkit for a broad range of ex vivo and in vivo gene editing applications, including fundamental immunological discovery and immune gene engineering.

3.
Nat Commun ; 13(1): 3940, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803946

RESUMO

Biotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (~30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (~20,000-14,000 ybp). From ~10,000 ybp to recent, assemblages became significantly more homogenous (>100% increase in Jaccard similarity), a pattern that cannot be explained by changes in fossil record sampling. Homogenization was most pronounced among mammals larger than 1 kg and occurred in two phases. The first followed the megafaunal extinction at ~10,000 ybp. The second, more rapid phase began during human population growth and early agricultural intensification (~2,000-1,000 ybp). We show that North American ecosystems were homogenizing for millennia, extending human impacts back ~10,000 years.


Assuntos
Biodiversidade , Extinção Biológica , Fósseis , Mamíferos , Agricultura , Animais , Tamanho Corporal , Ecossistema , Humanos , América do Norte , Crescimento Demográfico
4.
Proc Natl Acad Sci U S A ; 119(16): e2107393119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412903

RESUMO

Understanding the climatic drivers of environmental variability (EV) during the Plio-Pleistocene and EV's influence on mammalian macroevolution are two outstanding foci of research in African paleoclimatology and evolutionary biology. The potential effects of EV are especially relevant for testing the variability selection hypothesis, which predicts a positive relationship between EV and speciation and extinction rates in fossil mammals. Addressing these questions is stymied, however, by 1) a lack of multiple comparable EV records of sufficient temporal resolution and duration, and 2) the incompleteness of the mammalian fossil record. Here, we first compile a composite history of Pan-African EV spanning the Plio-Pleistocene, which allows us to explore which climatic variables influenced EV. We find that EV exhibits 1) a long-term trend of increasing variability since ∼3.7 Ma, coincident with rising variability in global ice volume and sea surface temperatures around Africa, and 2) a 400-ky frequency correlated with seasonal insolation variability. We then estimate speciation and extinction rates for fossil mammals from eastern Africa using a method that accounts for sampling variation. We find no statistically significant relationship between EV and estimated speciation or extinction rates across multiple spatial scales. These findings are inconsistent with the variability selection hypothesis as applied to macroevolutionary processes.


Assuntos
Evolução Biológica , Clima , Extinção Biológica , Especiação Genética , Hominidae , África , Animais , Fósseis , Hominidae/genética
6.
Proc Biol Sci ; 289(1968): 20211839, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135353

RESUMO

Dietary variation within species has important ecological and evolutionary implications. While theoreticians have debated the consequences of trait variance (including dietary specialization), empirical studies have yet to examine intraspecific dietary variability across the globe and through time. Here, we use new and published serial sampled δ13Cenamel values of herbivorous mammals from the Miocene to the present (318 individuals summarized, 4134 samples) to examine how dietary strategy (i.e. browser, mixed-feeder, grazer) affects individual isotopic variation. We find that almost all herbivores, regardless of dietary strategy, are composed of individual specialists. For example, Cormohipparion emsliei (Equidae) from the Pliocene of Florida (approx. 5 Ma) exhibits a δ13Cenamel range of 13.4‰, but all individuals sampled have δ13Cenamel ranges of less than or equal to 2‰ (mean = 1.1‰). Most notably, this pattern holds globally and through time, with almost all herbivorous mammal individuals exhibiting narrow δ13Cenamel ranges (less than or equal to 3‰), demonstrating that individuals are specialized and less representative of their overall species' dietary breadth. Individual specialization probably reduces intraspecific competition, increases carrying capacities, and may have stabilizing effects on species and communities over time. Individual specialization among species with both narrow and broad dietary niches is common over space and time-a phenomenon not previously well recognized or documented empirically.


Assuntos
Dieta , Herbivoria , Animais , Evolução Biológica , Isótopos de Carbono/análise , Humanos , Mamíferos
7.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074877

RESUMO

The appearance of Homo erectus shortly after 2.0 Ma is widely considered a turning point in human dietary evolution, with increased consumption of animal tissues driving the evolution of larger brain and body size and a reorganization of the gut. An increase in the size and number of zooarchaeological assemblages after the appearance of H. erectus is often offered as a central piece of archaeological evidence for increased carnivory in this species, but this characterization has yet to be subject to detailed scrutiny. Any widespread dietary shift leading to the acquisition of key traits in H. erectus should be persistent in the zooarchaeological record through time and can only be convincingly demonstrated by a broad-scale analysis that transcends individual sites or localities. Here, we present a quantitative synthesis of the zooarchaeological record of eastern Africa from 2.6 to 1.2 Ma. We show that several proxies for the prevalence of hominin carnivory are all strongly related to how well the fossil record has been sampled, which constrains the zooarchaeological visibility of hominin carnivory. When correcting for sampling effort, there is no sustained increase in the amount of evidence for hominin carnivory between 2.6 and 1.2 Ma. Our observations undercut evolutionary narratives linking anatomical and behavioral traits to increased meat consumption in H. erectus, suggesting that other factors are likely responsible for the appearance of its human-like traits.


Assuntos
Tamanho Corporal/fisiologia , Carnivoridade/fisiologia , Arqueologia/métodos , Evolução Biológica , Encéfalo/fisiologia , Dieta/métodos , Fósseis , Humanos
9.
Trends Ecol Evol ; 36(9): 797-807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34059368

RESUMO

A central goal of paleoanthropology is understanding the role of ecological change in hominin evolution. Over the past several decades researchers have expanded the hominin fossil record and assembled detailed late Cenozoic paleoclimatic, paleoenvironmental, and paleoecological archives. However, effective use of these data is precluded by the limitations of pattern-matching strategies for inferring causal relationships between ecological and evolutionary change. We examine several obstacles that have hindered progress, and highlight recent research that is addressing them by (i) confronting an incomplete fossil record, (ii) contending with datasets spanning varied spatiotemporal scales, and (iii) using theoretical frameworks to build stronger inferences. Expanding on this work promises to transform challenges into opportunities and set the stage for a new phase of paleoanthropological research.


Assuntos
Hominidae , Animais , Evolução Biológica , Fósseis , Hominidae/genética
10.
J Nanosci Nanotechnol ; 21(9): 4605-4614, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691839

RESUMO

An electrochemical biosensor for the detection of glucose is realized by immobilizing glucose oxidase (GOx) enzyme onto titanium dioxide nanotube arrays by a coupling encapsulation process. We present details of a robust fabrication technique that results in a durable and reproducible sensor characteristics. The TiO2 nanotube arrays are grown directly on a titanium substrate by a potentiostatic anodization process in a water and ethylene-glycol mixture solution, which contains ammonium fluoride. An electropolymerization process was also performed to enhance interfacial adhesion between GOx and TiO2 nanotubes. Detection of glucose concentrations was achieved with a linear response in the range of 0.01 to 0.2 mM. Investigation of enhanced sensitivity by increasing the count, the length, and the cross-section of the nanotubes was also carried out. Surface morphologies of Ti substrate were examined by scanning electron microscopy to optimize the anodization process and thus the TiO2/Ti nanotube dimensions. We utilized a time-based amperometric response for the quantitative determination of hydrogen peroxide concentration through electro-reduction reaction with a bare TiO2/Ti nanotube-array electrodes, thus providing a reference for the determination of glucose levels with a GOx-coated TiO2/Ti nanotube array electrodes. Detection levels down to 5.2 µM were recorded.


Assuntos
Técnicas Biossensoriais , Nanotubos , Eletrodos , Glucose , Glucose Oxidase , Titânio
11.
Trends Ecol Evol ; 36(1): 61-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067015

RESUMO

Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.


Assuntos
Biodiversidade , Fósseis , Evolução Biológica , Mudança Climática
13.
J Hum Evol ; 138: 102688, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759257

RESUMO

Reliable estimates of when hominin taxa originated and went extinct are central to addressing many paleoanthropological questions, including those relating to macroevolutionary patterns. The timing of hominin temporal ranges can be used to test chronological predictions generated from phylogenetic hypotheses. For example, hypotheses of phyletic ancestor-descendant relationships, based on morphological data, predict no temporal range overlap between the two taxa. However, a fossil taxon's observed temporal range is almost certainly underestimated due to the incompleteness of both the fossil record itself and its sampling, and this decreases the likelihood of observing temporal overlap. Here, we focus on a well-known and widely accepted early hominin lineage, Australopithecus anamensis-afarensis, and place 95% confidence intervals (CIs) on its origination and extinction dates. We do so to assess whether its temporal range is consistent with it being a phyletic descendant of Ardipithecus ramidus and/or a direct ancestor to the earliest claimed representative of Homo (i.e., Ledi-Geraru). We find that the last appearance of Ar. ramidus falls within the origination CI of Au. anamensis-afarensis, whereas the claimed first appearance of Homo postdates the extinction CI. These results are consistent with Homo evolving from Au. anamensis-afarensis, but temporal overlap between Ar. ramidus and Au. anamensis-afarensis cannot be rejected at this time. Though additional samples are needed, future research should extend our initial analyses to incorporate the uncertainties surrounding the range endpoints of Ar. ramidus and earliest Homo. Overall, our findings demonstrate the need for quantifying the uncertainty surrounding the appearances and disappearances of hominin taxa in order to better understand the timing of evolutionary events in our clade's history.


Assuntos
Evolução Biológica , Extinção Biológica , Hominidae , Filogenia , Animais , Fósseis , Hominidae/classificação
14.
Prog Brain Res ; 250: 219-250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31703902

RESUMO

When compared to the brains of our closest living relatives, chimpanzees and bonobos, the brains of modern humans are larger and differently shaped. This chapter reviews what we know about the evolutionary history of these differences. We can make an educated guess about the size and shape of the brains of the hypothetical common ancestor of modern humans and chimpanzees/bonobos, but between ca. 8 million years ago and the present day evidence about the size and shape of the brain comes from either natural endocasts, which are literally brain-shaped rocks, or from individuals for which enough of the brain case is preserved to provide estimates of endocranial volume and/or the relative proportions of the different regions of the cerebral hemispheres and the cerebellum. The tempo and mode of brain size increase in the hominin clade has been the subject of spirited debate, but we suggest that some of this controversy is the combination of an overreliance on frequentist statistical tests and researchers addressing these issues at different taxonomic scales. The existence and significance of shape changes are also controversial topics, made more so by the dearth of reliable evidence.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Humanos
15.
Proc Natl Acad Sci U S A ; 116(43): 21478-21483, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591246

RESUMO

Present-day African ecosystems serve as referential models for conceptualizing the environmental context of early hominin evolution, but the degree to which modern ecosystems are representative of those in the past is unclear. A growing body of evidence from eastern Africa's rich and well-dated late Cenozoic fossil record documents communities of large-bodied mammalian herbivores with ecological structures differing dramatically from those of the present day, implying that modern communities may not be suitable analogs for the ancient ecosystems of hominin evolution. To determine when and why the ecological structure of eastern Africa's herbivore faunas came to resemble those of the present, here we analyze functional trait changes in a comprehensive dataset of 305 modern and fossil herbivore communities spanning the last ∼7 Myr. We show that nearly all communities prior to ∼700 ka were functionally non-analog, largely due to a greater richness of non-ruminants and megaherbivores (species >1,000 kg). The emergence of functionally modern communities precedes that of taxonomically modern communities by 100,000s of years, and can be attributed to the combined influence of Plio-Pleistocene C4 grassland expansion and pulses of aridity after ∼1 Ma. Given the disproportionate ecological impacts of large-bodied herbivores on factors such as vegetation structure, hydrology, and fire regimes, it follows that the vast majority of early hominin evolution transpired in the context of ecosystems that functioned unlike any today. Identifying how past ecosystems differed compositionally and functionally from those today is key to conceptualizing ancient African environments and testing ecological hypotheses of hominin evolution.


Assuntos
Evolução Biológica , Ecossistema , Hominidae/genética , África Oriental , Animais , Fósseis/história , Herbivoria/classificação , Herbivoria/genética , História Antiga , Hominidae/classificação , Humanos , Paleontologia
16.
Science ; 365(6459): 1305-1308, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31604240

RESUMO

Large mammals are at high risk of extinction globally. To understand the consequences of their demise for community assembly, we tracked community structure through the end-Pleistocene megafaunal extinction in North America. We decomposed the effects of biotic and abiotic factors by analyzing co-occurrence within the mutual ranges of species pairs. Although shifting climate drove an increase in niche overlap, co-occurrence decreased, signaling shifts in biotic interactions. Furthermore, the effect of abiotic factors on co-occurrence remained constant over time while the effect of biotic factors decreased. Biotic factors apparently played a key role in continental-scale community assembly before the extinctions. Specifically, large mammals likely promoted co-occurrence in the Pleistocene, and their loss contributed to the modern assembly pattern in which co-occurrence frequently falls below random expectations.


Assuntos
Ecossistema , Extinção Biológica , Fósseis , Mamíferos , Animais , Mudança Climática , América do Norte , Paleontologia , Dinâmica Populacional
17.
Sci Adv ; 5(5): eaav9038, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31086821

RESUMO

Understanding the emergence of the genus Homo is a pressing problem in the study of human origins. Australopithecus sediba has recently been proposed as the ancestral species of Homo, although it postdates earliest Homo by 800,000 years. Here, we use probability models to demonstrate that observing an ancestor's fossil horizon that is at least 800,000 years younger than the descendant's fossil horizon is unlikely (about 0.09% on average). We corroborate these results by searching the literature and finding that within pairs of purported hominin ancestor-descendant species, in only one case did the first-discovered fossil in the ancestor postdate that from the descendant, and the age difference between these fossils was much less than the difference observed between A. sediba and earliest Homo. Together, these results suggest it is highly unlikely that A. sediba is ancestral to Homo, and the most viable candidate ancestral species remains Australopithecus afarensis.


Assuntos
Fósseis , Hominidae/fisiologia , Animais , Fósseis/história , História Antiga , Humanos , Modelos Teóricos
18.
Science ; 362(6417): 938-941, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30467167

RESUMO

It has long been proposed that pre-modern hominin impacts drove extinctions and shaped the evolutionary history of Africa's exceptionally diverse large mammal communities, but this hypothesis has yet to be rigorously tested. We analyzed eastern African herbivore communities spanning the past 7 million years-encompassing the entirety of hominin evolutionary history-to test the hypothesis that top-down impacts of tool-bearing, meat-eating hominins contributed to the demise of megaherbivores prior to the emergence of Homo sapiens We document a steady, long-term decline of megaherbivores beginning ~4.6 million years ago, long before the appearance of hominin species capable of exerting top-down control of large mammal communities and predating evidence for hominin interactions with megaherbivore prey. Expansion of C4 grasslands can account for the loss of megaherbivore diversity.


Assuntos
Evolução Biológica , Extinção Biológica , Herbivoria , Hominidae , África , Animais , Biodiversidade , Ingestão de Alimentos , Fósseis , Pradaria , Humanos , Carne
19.
J Hum Evol ; 124: 25-39, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30153945

RESUMO

Knowing how the diversity of large mammal communities changes across space and time provides an important ecological framework for studying hominin evolution. However, diversity studies that apply methods currently used by neoecologists are rare in paleoanthropology and are also challenging due to diversity's unusual statistical properties. Here, we apply up-to-date analytical methods for understanding how species- and genus-level large mammalian diversity in the Omo-Turkana Basin changed through time and across space at multiple spatiotemporal scales (within each formation:102-3 km2 and 104-5 years; and within the basin as a whole: 103 km2 and 105 years). We found that, on average, Koobi Fora's large mammal community was more diverse than Nachukui's, which in turn was more diverse than Shungura's. Diversity was stable through time within each of these formations (alpha diversity), as was diversity in the basin as a whole (gamma diversity). Compositional dissimilarity between these three formations (beta diversity) was relatively low through time, with a 0.6 average proportion of shared species, suggesting dispersal acted to homogenize the region. Though alpha and gamma diversity were fairly stable through time, we do observe several notable peaks: during the KBS Member in Koobi Fora (30% increase), the Lokalalei Member in Nachukui (120% increase), and at 1.7 Ma in the entire basin (100% increase). We conclude by (1) demonstrating that habitat heterogeneity was an important factor influencing alpha diversity within each of the three formations, and (2) hypothesizing that diversity stability may have been driven by equilibrial dynamics in which overall diversity was constrained by resource availability, implying biotic interactions were an important factor in structuring the communities that included hominins as members. Our findings demonstrate the need to quantify how large mammal diversity changes across time and space in order to further our understanding of hominin ecology and evolution.


Assuntos
Biodiversidade , Fósseis , Mamíferos , África Oriental , Animais , Evolução Biológica , Ecossistema
20.
J Hum Evol ; 122: 70-83, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29970233

RESUMO

The ecological and selective forces that sparked the emergence of Homo's adaptive strategy remain poorly understood. New fossil and archaeological finds call into question previous interpretations of the grade shift that drove our ancestors' evolutionary split from the australopiths. Furthermore, issues of taphonomy and scale have limited reconstructions of the hominin habitats and faunal communities that define the environmental context of these behavioral changes. The multiple ∼1.5 Ma track surfaces from the Okote Member of the Koobi Fora Formation at East Turkana provide unique windows for examining hominin interactions with the paleoenvironment and associated faunas at high spatiotemporal resolution. These surfaces preserve the tracks of many animals, including cf. Homo erectus. Here, we examine the structure of the animal community that inhabited this landscape, considering effects of preservation bias by comparing the composition of the track assemblage to a skeletal assemblage from the same time and place. We find that the track and skeletal assemblages are similar in their representation of the vertebrate paleocommunity, with comparable levels of taxonomic richness and diversity. Evenness (equitability of the number of individuals per taxon) differs between the two assemblages due to the very different circumstances of body fossil versus track preservation. Both samples represent diverse groups of taxa including numerous water-dependent species, consistent with geological interpretations of the track site environments. Comparisons of these assemblages also show a pattern of non-random hominin association with a marginal lacustrine habitat relative to other vertebrates in the track assemblage. This evidence is consistent with behavior that included access to aquatic foods and possibly hunting by H. erectus in lake margins/edaphic grasslands. Such behaviors may signal the emergence of the adaptative strategies that define our genus.


Assuntos
Arqueologia , Biota , Aves , Fósseis , Mamíferos , Répteis , Animais , Hominidae , Quênia , Características de História de Vida , Paleontologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...