Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374804

RESUMO

The transmissive mode laser micro-ablation performance of near-infrared (NIR) dye-optimized ammonium dinitramide (ADN)-based liquid propellant was investigated in laser plasma propulsion using a pulse YAG laser with 5 ns pulse width and 1064 nm wavelength. Miniature fiber optic near-infrared spectrometer, differential scanning calorimeter (DSC) and high-speed camera were used to study laser energy deposition, thermal analysis of ADN-based liquid propellants and the flow field evolution process, respectively. Experimental results indicate that two important factors, laser energy deposition efficiency and heat release from energetic liquid propellants, obviously affect the ablation performance. The results showed that the best ablation effect of 0.4 mL ADN solution dissolved in 0.6 mL dye solution (40%-AAD) liquid propellant was obtained with the ADN liquid propellant content increasing in the combustion chamber. Furthermore, adding 2% ammonium perchlorate (AP) solid powder gave rise to variations in the ablation volume and energetic properties of propellants, which enhanced the propellant enthalpy variable and burn rate. Based on the AP optimized laser ablation, the optimal single-pulse impulse (I)~9.8 µN·s, specific impulse (Isp)~234.9 s, impulse coupling coefficient (Cm)~62.43 dyne/W and energy factor (η)~71.2% were obtained in 200 µm scale combustion chamber. This work would enable further improvements in the small volume and high integration of liquid propellant laser micro-thruster.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122804, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167801

RESUMO

The excited-state intramolecular proton transfer process of 2-(1,3-benzothiazol-2-yl)-4-[2-(4-nitrophenyl)ethynyl]phenol (HBT-d-NO2) in the different surrounding environment is investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The optimized molecular structure provides convincing evidence that the intramolecular hydrogen bond is strengthened in the first excited (S1) state. The frontier molecular orbitals observed the HBT-d-NO2 exists obvious intramolecular charge translate phenomenon. The results of the potential energy curve show that HBT-d-NO2 is difficult to undergo proton transfer in the ground (S0) state due to the high energy barrier, while it becomes easier in the S1 state in both liquid and solid phases. By comparison, the energy barrier of ESIPT in the solid phase is higher than that in the liquid phase. We can conclude that the solid phase effectively hinders the ESIPT process compared with that the liquid phase. In this work, we illustrate the influence of liquid and solid phases on the intramolecular proton transfer process, which could promote further developments in biomedical and fluorophore applications.

3.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991596

RESUMO

Novel optical gas-sensing materials for Au nanoparticle (NP)-modified ZnO nanorod (NR) arrays were fabricated using hydrothermal synthesis and magnetron sputtering on Si substrates. The optical performance of ZnO NR can be strongly modulated by the annealing temperature and Au sputtering time. With exposure to trace quantities of oxygen, the ultraviolet (UV) emission of the photoluminescence (PL) spectra of Au/ZnO samples at ~390 nm showed a large variation in intensity. Based on this mechanism, ZnO NR based oxygen gas sensing via PL spectra variation demonstrated a wide linear detection range of 10-100%, a high response value, and a 1% oxygen content sensitivity detection limit at 225 °C. This outstanding optical oxygen-sensing performance can be attributed to the large surface area to volume ratio, high crystal quality, and high UV emission efficiency of the Au NP-modified ZnO NR arrays. Density functional theory (DFT) simulation results confirmed that after the Au NPs modified the surface of the ZnO NR, the charge at the interface changed, and the structure of Au/ZnO had the lowest adsorption energy for oxygen molecules. These results suggest that Au NP-modified ZnO NR are promising for high-performance optical gas-sensing applications.

4.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683683

RESUMO

In the field of laser ablation micro-propulsion, the property of double-layer tape has significant impact on the propulsion performance. In this paper, low temperature plasma was used to treat the surface of polyethylene terephthalate (PET) to improve its adhesion with energetic polymer. The PET surface pre- and post-plasma treatment was characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), and the enhancement mechanism of the interface adhesion was discussed. In addition, the ablation performance of the double-layer tape after the plasma treatment was studied. The results showed that the plasma etching effect increased the root mean square roughness of the PET surface from 1.74 nm to 19.10 nm. In addition, after the plasma treatment, the number of C-OH/COOH bonds and O=C-O bonds increased, which also greatly improved the adhesion between the PET and energetic polymers. In the optimization of the ablation performance, the optimal laser pulse width was about 200 µs. The optimal values of the specific impulse (Isp), impulse coupling coefficient (Cm), and ablation efficiency (η) were 390.65 s, 250.82 µN/W, and 48.01%, respectively. The optimization of the adhesion of the double-layer tape and the ablation performance lay the foundation for the engineering application of laser ablation micro-thrusters.

5.
Opt Lett ; 47(5): 1145-1148, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230312

RESUMO

Ultrafine one-dimensional WO3 nanorods (NRs) with diameters of 10-200 nm have been fabricated using a hydrothermal synthesis method. The optical performance of the WO3 NRs strongly depends on their various defects as well as their crystal quality. Upon exposure to trace quantities of ethanol gas, the photoluminescence (PL) spectra of these nanorod samples under ultraviolet illumination showed a large variation in intensity. WO3-NR-based ethanol gas sensing via PL spectra variation demonstrated a 100 ppm sensitivity detection limit and a wide linear detection range of 200-2000 ppm at 100°C. This outstanding optical ethanol sensing performance can be ascribed to the very large surface area to volume ratio of this material, which increases the density of active sites for ethanol adsorption and reaction with adsorbed oxygen species.

6.
ChemSusChem ; 13(1): 260-266, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31444854

RESUMO

Transition metal selenides (TMSs) with excellent electrochemical activity and high intrinsic electrical conductivity have attracted considerable attention owing to their potential use in energy storage devices. However, the low energy densities of the reported TMSs, which originate from the small active surface area and poor electrolyte ion mobility, substantially restrict their application potential. In this work, porous ultrathin nickel selenide nanosheet networks (NiSe NNs) on nickel foam are fabricated by using a novel, facile method, that is, selenylation/pickling of the pre-formed manganese-doped α-Ni(OH)2 . Removal of Mn resulted in NNs with a highly porous structure. The 3D framework of the NNs and the inherent nature of the NiSe affords high ion mobility, abundant accessible activated sites, vigorous electrochemical activity, and low resistance. One of the highest specific capacities of TMSs ever reported, that is, 443 mA h g-1 (807 µAh cm-2 ) at 3.0 A g-1 , is achieved with the NNs as electrodes. The assembled NiSe NNs//porous carbon hybrid supercapacitor delivers a high energy density of 66.6 Wh kg-1 at a power density of 425 W kg-1 , with excellent cycling stability. This work provides a new strategy for the production of novel electrode materials that can be applied in high-performance hybrid supercapacitors, and a fresh pathway towards commercial applications of hybrid supercapacitors based on TMS electrodes.

7.
Nanoscale ; 11(30): 14322-14329, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323078

RESUMO

Development of fluorescence enhancement (FE) platforms based on ZnO nanorods (NRs) has sparked considerable interest, thanks to their well-demonstrated potential in chemical and biological detection. Among the multiple factors determining the FE performance, high-order waveguide modes are specifically promising in boosting the sensitivity and realizing selective detection. However, quantitative experimental studies on the influence of the NR diameter, substrate, and surrounding medium, on the waveguide-based FE properties remain lacking. In this work, we have designed and fabricated a FE platform based on patterned and well-defined arrays of vertical, hexagonal prism ZnO NRs with six distinct diameters. Both direct experimental evidence and theoretical simulations demonstrate that high-order waveguide modes play a crucial role in FE, and are strongly dependent on the NR diameter, substrate, and surrounding medium. Using the optimized FE platform, a significant limit of detection (LOD) of 10-16 mol L-1 for Rhodamine-6G probe detection is achieved. Especially, a LOD as low as 10-14 g mL-1 is demonstrated for a prototype biomarker of carcinoembryonic antigen, which is improved by one order compared with the best LOD ever reported using fluorescence-based detection. This work provides an efficient path to design waveguiding NRs-based biochips for ultrasensitive and highly-selective biosensing.


Assuntos
Bioensaio/métodos , Corantes Fluorescentes/química , Nanotubos/química , Biomarcadores/análise , Antígeno Carcinoembrionário/análise , Humanos , Imunoensaio/métodos , Limite de Detecção , Neoplasias/diagnóstico , Rodaminas/química , Óxido de Zinco/química
8.
Angew Chem Int Ed Engl ; 57(33): 10666-10671, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29900645

RESUMO

Phase transition from WO3 to sub-stoichiometric WO2.9 by a facile method has varied the typical semiconductor to be quasi-metallic with a narrowed band gap and a shifted Femi energy to the conduction band, while maintaining a high crystallinity. The resultant WO2.9 nanorods possess a high total absorption capacity (ca. 90.6 %) over the whole solar spectrum as well as significant photothermal conversion capability, affording a conversion efficiency as high as around 86.9 % and a water evaporation efficiency of about 81 % upon solar light irradiation. Meanwhile, the promising potential of the nanorods for anticancer photothermal therapy have been also demonstrated, with a high photothermal conversion efficiency (ca. 44.9 %) upon single wavelength near-infrared irradiation and a high tumor inhibition rate (ca. 98.5 %). This study may have opened up a feasible route to produce high-performance photothermal materials from well-developed oxides.


Assuntos
Antineoplásicos/química , Nanotubos/química , Óxidos/química , Tungstênio/química , Água/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Raios Infravermelhos , Óxidos/toxicidade , Transição de Fase , Luz Solar , Temperatura , Tungstênio/toxicidade
9.
ChemSusChem ; 11(10): 1678-1685, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29508549

RESUMO

Low-cost activated carbons with high capacitive properties remain desirable for supercapacitor applications. Herein, a three-dimensional scaffolding framework of porous carbon nanosheets (PCNSs) has been produced from a typical biowaste, namely, ground cherry calyces, the specific composition and natural structures of which have contributed to the PCNSs having a very large specific surface area of 1612 m2 g-1 , a hierarchical pore size distribution, a turbostratic carbon structure with a high degree graphitization, and about 10 % oxygen and nitrogen heteroatoms. A high specific capacitance of 350 F g-1 at 0.1 A g-1 has been achieved in a two-electrode system with 6 m KOH; this value is among the highest specific capacitance of biomass-derived carbon materials. More inspiringly, a high energy density of 22.8 Wh kg-1 at a power density of 198.8 W kg-1 can be obtained with 1 m aqueous solution of Li2 SO4 , and an ultrahigh energy density of 81.4 Wh kg-1 at a power density of 446.3 W kg-1 is realized with 1-ethyl-3-methylimidazolium tetrafluoroborate electrolyte.

10.
Nanoscale ; 9(42): 16183-16192, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29043348

RESUMO

Photothermal agents (PTAs) with high biocompatibility and therapeutic efficacy have become particularly fascinating, however, knowledge of their photothermal performance is rather limited. Herein, rationally designed core-shell TiO2 nanoparticles have been fabricated using a mild hydrogenation method, where NaBH4 was used as the H2 source. The resultant TiO2 possesses strong optical absorption in the NIR region and remarkable photothermal conversion capability and stability, leading to a high inhibition rate on cancer cells. In particular, its photothermal conversion efficiency is as high as 55.2%, which is 204% that of the fully hydrogenated amorphous TiO2. More importantly, the underlying mechanism is proposed. It is revealed that while the oxygen vacancies induced by the hydrogenation can introduce defect levels in the band gap and enhance the optical absorption, the superfluous oxygen vacancies and defects reduce the photothermal conversion capability and thermal conductivity to a large extent. Controlling the hydrogenation degree and maintaining a certain extent of crystallization are, therefore, crucial to the photothermal properties. This new understanding of the photothermal conversion mechanism may have provided a fresh route to design and optimize PTAs and inspire considerable interest to turn a large variety of semiconductor metal oxides into competent PTAs by appropriate hydrogenation.

11.
ACS Appl Mater Interfaces ; 8(25): 16379-85, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27258907

RESUMO

Novel CuO nanoparticle-capped ZnO nanorods have been produced using a pulsed laser deposition (PLD) method. These nanorods are shown to grow by a CuO-nanoparticle-assisted vapor-solid-solid (V-S-S) mechanism. The photoluminescence (PL) accompanying ultraviolet illumination of these capped nanorod samples shows large variations upon exposure to trace quantities of H2S gas. The present data suggest that both the Cu-doped ZnO stem and the CuO capping nanoparticle contribute to optical H2S sensing with these CuO-ZnO nanorods. This study represents the first demonstration of PL-based H2S gas sensing, at room temperature, with sub-ppm sensitivity. It also opens the way to producing CuO-ZnO nanorods by a V-S-S mechanism using gas-phase methods other than PLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...