Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 671, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970011

RESUMO

BACKGROUND: The dirigent (DIR) genes encode proteins that act as crucial regulators of plant lignin biosynthesis. In Solanaceae species, members of the DIR gene family are intricately related to plant growth and development, playing a key role in responding to various biotic and abiotic stresses. It will be of great application significance to analyze the DIR gene family and expression profile under various pathogen stresses in Solanaceae species. RESULTS: A total of 57 tobacco NtDIRs and 33 potato StDIRs were identified based on their respective genome sequences. Phylogenetic analysis of DIR genes in tobacco, potato, eggplant and Arabidopsis thaliana revealed three distinct subgroups (DIR-a, DIR-b/d and DIR-e). Gene structure and conserved motif analysis showed that a high degree of conservation in both exon/intron organization and protein motifs among tobacco and potato DIR genes, especially within members of the same subfamily. Total 8 pairs of tandem duplication genes (3 pairs in tobacco, 5 pairs in potato) and 13 pairs of segmental duplication genes (6 pairs in tobacco, 7 pairs in potato) were identified based on the analysis of gene duplication events. Cis-regulatory elements of the DIR promoters participated in hormone response, stress responses, circadian control, endosperm expression, and meristem expression. Transcriptomic data analysis under biotic stress revealed diverse response patterns among DIR gene family members to pathogens, indicating their functional divergence. After 96 h post-inoculation with Ralstonia solanacearum L. (Ras), tobacco seedlings exhibited typical symptoms of tobacco bacterial wilt. The qRT-PCR analysis of 11 selected NtDIR genes displayed differential expression pattern in response to the bacterial pathogen Ras infection. Using line 392278 of potato as material, typical symptoms of potato late blight manifested on the seedling leaves under Phytophthora infestans infection. The qRT-PCR analysis of 5 selected StDIR genes showed up-regulation in response to pathogen infection. Notably, three clustered genes (NtDIR2, NtDIR4, StDIR3) exhibited a robust response to pathogen infection, highlighting their essential roles in disease resistance. CONCLUSION: The genome-wide identification, evolutionary analysis, and expression profiling of DIR genes in response to various pathogen infection in tobacco and potato have provided valuable insights into the roles of these genes under various stress conditions. Our results could provide a basis for further functional analysis of the DIR gene family under pathogen infection conditions.


Assuntos
Evolução Molecular , Família Multigênica , Nicotiana , Filogenia , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Duplicação Gênica , Ralstonia solanacearum , Genes de Plantas
2.
Micromachines (Basel) ; 15(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930667

RESUMO

Maximizing efficiency, power density, and reliability stands as paramount objectives in the advancement of power electronic systems. Notably, the dimensions and losses of magnetic components emerge as primary constraints hindering the miniaturization of such systems. Researchers have increasingly focused on the design of loss minimization and size optimization of magnetic devices. In this paper, with the objective of minimizing the loss of magnetic devices, an optimal design method for the winding structure of devices is proposed based on the coupling relationship between the loss prediction model and the design variables. The method examines the decoupling conditions between the design variables and the loss model, deriving optimized design closure equations for the design variables. This approach furnishes a technical foundation for the miniaturized design of miniature apparatuses incorporating magnetic components, offering a straightforward and adaptable design methodology. The finite element method simulation results and experimental measurement data verify the accuracy of the prediction of the proposed method and the validity of the optimal design theory of device loss.

3.
Micromachines (Basel) ; 15(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930710

RESUMO

Traditional magnetic levitation planar micromotors suffer from poor controllability, short travel range, low interference resistance, and low precision. To address these issues, a distributed coil magnetically levitated planar micromotor with a gated recurrent unit (GRU)-extended state observer (ESO) control strategy is proposed in this paper. First, the structural design of the distributed coil magnetically levitated planar micromotor employs a separation of levitation and displacement, reducing system coupling and increasing controllability and displacement range. Then, theoretical analysis and model establishment of the system are conducted based on the designed distributed coil magnetically levitated planar micromotor and its working principles, followed by simulation verification. Finally, based on the established system model, a GRU-ESO controller is designed. An ESO feedback control term is introduced to enhance the system's anti-interference capability, and the GRU feedforward compensation control term is used to improve the system's tracking control accuracy. The experimental results demonstrate the reliability of the designed distributed coil magnetic levitation planar micromotor and the effectiveness of the controller.

4.
BMC Genomics ; 25(1): 13, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166535

RESUMO

BACKGROUND: Alcohol dehydrogenases (ADHs) are the crucial enzymes that can convert ethanol into acetaldehyde. In tobacco, members of ADH gene family are involved in various stresses tolerance reactions, lipid metabolism and pathways related to plant development. It will be of great application significance to analyze the ADH gene family and expression profile under various stresses in tobacco. RESULTS: A total of 53 ADH genes were identified in tobacco (Nicotiana tabacum L.) genome and were grouped into 6 subfamilies based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were highly conserved among the NtADH genes, especially the members within the same subfamily. A total of 5 gene pairs of tandem duplication, and 3 gene pairs of segmental duplication were identified based on the analysis of gene duplication events. Cis-regulatory elements of the NtADH promoters participated in cell development, plant hormones, environmental stress, and light responsiveness. The analysis of expression profile showed that NtADH genes were widely expressed in topping stress and leaf senescence. However, the expression patterns of different members appeared to be diverse. The qRT-PCR analysis of 13 NtADH genes displayed their differential expression pattern in response to the bacterial pathogen Ralstonia solanacearum L. INFECTION: Metabolomics analysis revealed that NtADH genes were primarily associated with carbohydrate metabolism, and moreover, four NtADH genes (NtADH20/24/48/51) were notably involved in the pathway of alpha-linolenic acid metabolism which related to the up-regulation of 9-hydroxy-12-oxo-10(E), 15(Z)-octadecadienoic acid and 9-hydroxy-12-oxo-15(Z)-octadecenoic acid. CONCLUSION: The genome-wide identification, evolutionary analysis, expression profiling, and exploration of related metabolites and metabolic pathways associated with NtADH genes have yielded valuable insights into the roles of these genes in response to various stresses. Our results could provide a basis for functional analysis of NtADH gene family under stressful conditions.


Assuntos
Família Multigênica , Nicotiana , Nicotiana/genética , Filogenia , Motivos de Aminoácidos , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Perfilação da Expressão Gênica/métodos
5.
Waste Manag ; 172: 299-307, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935084

RESUMO

With the significant growth in the production and installation of photovoltaic (PV) systems, the recycling of end-of-life PV modules has become a critical concern. Thermal treatment is a promising approach to decompose all the polymer and separate different layers rapidly. However, the combustion of the backsheet can lead to the release of hazardous fluorinated compounds. This paper proposes a novel method combining low-temperature and thermal treatment to separate different layers in PV modules. This method leverages the back metallization of solar cells for PV module separation, providing a fresh separation perspective. The focus lies on investigating a low-temperature separation process, and the separation interfaces are characterized using SEM and EDS, shedding light on the separation position and physical separation mechanisms. Subsequently, the effects of different freezing temperatures, freezing times, and different laminated parts were investigated, and the processing parameters were optimized. Compared to direct thermal treatment, the proposed process eliminates the generation of hazardous fluorides and mitigates mass losses caused by thermal treatment effectively. This research provides valuable insights into the green and sustainable resource recovery of waste PV modules.


Assuntos
Resíduo Eletrônico , Silício , Temperatura , Silício/química , Resíduo Eletrônico/análise , Temperatura Baixa , Polímeros
6.
Comput Methods Programs Biomed ; 214: 106483, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871837

RESUMO

BACKGROUND AND OBJECTIVE: In the application of wearable heart-monitors, it is of great significance to analyze electrocardiogram (ECG) signals for anomaly detection. ECG arrhythmia classification remains an open problem in that it cannot easily recognize data from minority classes due to the imbalanced dataset and particular characteristic of the time series signal. In this study, a novel method is presented as a possible solution to imbalanced classification problems. METHODS: An improved data augmentation method based on variational auto-encoder (VAE) and auxiliary classifier generative adversarial network (ACGAN) is implemented to address the difficulties resulting from the imbalanced dataset. Based on the augmented dataset, convolutional neural network (CNN) classifiers are employed to automatically recognize arrhythmias using two-dimensional ECG images. RESULTS: In experimental studies conducted with the MIT-BIH arrhythmia database, the proposed method achieves 98.45% accuracy and 97.03% sensitivity. The sensitivities of two minority classes achieve 95.83% and 97.37%, respectively. CONCLUSION: In imbalanced classification, the sensitivity of minority class is a key evaluation indicator. One of the significant contributions of this study is that the proposed method can obtain higher sensitivity of minority class. The experimental results demonstrate that the proposed method for ECG arrhythmia calssification under imbalanced data has better performance compared with traditional cropping augmentation methods and traditional classifiers.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...