Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175616, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168324

RESUMO

Microbial nitrogen (N) removal is crucial for purifying surface water quality in paddy irrigation and drainage units (IDUs). However, the spatiotemporal microbial N removal potential characteristics within these IDUs and the effects of changing anaerobic conditions on this potential remain insufficiently studied. In this study, we investigated the microbial N removal potential of conventional rice-wheat rotation and anaerobically enhanced rice-crayfish rotation IDUs using field measurements, isotope tracing techniques, and quantitative PCR. Our findings reveal that paddy fields were identified as hotspots for anammox activity, contributing to 76.0 %-97.4 % of the total anammox N removal potential in the IDU, while denitrification processes in ditches accounted for 43.5 %-77.4 % of the IDU's denitrification potential. During the rice transplanting period, the anammox N removal potential peaked, representing 35.8 % and 71.8 % of the total anammox N removal potential of the paddy fields in rice-wheat and rice-crayfish IDUs, respectively. An increase in anaerobic conditions diminished the anammox N removal potential while amplifying denitrification capabilities. The N removal potential in paddy fields decreased with increasing depth, contrasting with the relative stability in ditches. Spatiotemporal fluctuations in N removal potentials within these units are influenced by Fe2+ concentration, carbon and N content, WFPS, and pH levels. This study provides a scientific basis for improving nitrogen removal and water quality treatment in IDUs.

2.
Sci Total Environ ; 848: 157721, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35914605

RESUMO

The rice-crayfish (RC) integrated pattern has been developed vigorously in China, but how it affects the nitrogen (N) runoff loss and distribution status during rice production is still poorly studied. Based on this, we selected two types of irrigation and drainage units (IDUs), which adopted the traditional rice-wheat (RW) rotation pattern and burgeoning RC rotation pattern separately, to investigate the effect of the RC pattern on N runoff loss, inorganic N distribution and N balance of the IDU. The results showed that there was a 241 kg ha-1 yr-1 and 135 kg ha-1 yr-1 N surplus achieved under RW and RC, respectively. Among these, the N surplus of RC was 53 % lower than that of RW during the rice growing season and was 37 % lower at other times. The NH4+-N contents of paddy field soils, rice yields and productive traits were not affected by rotation patterns. Nevertheless, the total nitrogen (TN), dissolved organic nitrogen (DON) and NH4+-N concentrations of RC field water were significantly higher (P < 0.01), and the N runoff losses of the RC pattern increased by 103 % to 855 % compared with the RW pattern. In addition, the NH4+-N reserved in RC ditch sediments substantially increased regardless of the dynamic changes during the rice growing season or from the vertical distribution at depths of 0-40 cm. Our results indicated that the RC pattern was beneficial for decreasing the N surplus without impacting the rice yield. However, larger N runoff losses and more available N flowing into crayfish farming ditches still pose great environmental risks. Therefore, more efficient and cleaner measures should be applied for the N management of IDU under the RC pattern.


Assuntos
Oryza , Animais , Astacoidea , Fertilizantes , Nitrogênio/análise , Fósforo , Solo , Triticum , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA