Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(6): 991-1002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38866970

RESUMO

The contribution of three-dimensional genome organization to physiological ageing is not well known. Here we show that large-scale chromatin reorganization distinguishes young and old bone marrow progenitor (pro-) B cells. These changes result in increased interactions at the compartment level and reduced interactions within topologically associated domains (TADs). The gene encoding Ebf1, a key B cell regulator, switches from compartment A to B with age. Genetically reducing Ebf1 recapitulates some features of old pro-B cells. TADs that are most reduced with age contain genes important for B cell development, including the immunoglobulin heavy chain (Igh) locus. Weaker intra-TAD interactions at Igh correlate with altered variable (V), diversity (D) and joining (J) gene recombination. Our observations implicate three-dimensional chromatin reorganization as a major driver of pro-B cell phenotypes that impair B lymphopoiesis with age.


Assuntos
Envelhecimento , Linfócitos B , Montagem e Desmontagem da Cromatina , Cadeias Pesadas de Imunoglobulinas , Linfopoese , Animais , Envelhecimento/genética , Envelhecimento/metabolismo , Linfócitos B/metabolismo , Linfopoese/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Transativadores/metabolismo , Transativadores/genética , Cromatina/metabolismo , Cromatina/genética , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , Camundongos Endogâmicos C57BL , Camundongos , Diferenciação Celular , Camundongos Knockout
2.
Front Immunol ; 9: 2426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483245

RESUMO

Functional antigen receptor genes are assembled by somatic rearrangements that are largely lymphocyte lineage specific. The immunoglobulin heavy chain (IgH) gene locus is unique amongst the seven antigen receptor loci in undergoing partial gene rearrangements in the wrong lineage. Here we demonstrate that breakdown of lineage-specificity is associated with inappropriate activation of the Eµ enhancer during T cell development by a different constellation of transcription factors than those used in developing B cells. This is reflected in reduced enhancer-induced epigenetic changes, eRNAs, formation of the RAG1/2-rich recombination center, attenuated chromatin looping and markedly different utilization of DH gene segments in CD4+CD8+ (DP) thymocytes. Additionally, CTCF-dependent VH locus compaction is disrupted in DP cells despite comparable transcription factor binding in both lineages. These observations identify multiple mechanisms that contribute to lineage-specific antigen receptor gene assembly.


Assuntos
Regulação da Expressão Gênica , Loci Gênicos , Cadeias Pesadas de Imunoglobulinas/genética , Timócitos/imunologia , Timócitos/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos , Íntrons , Camundongos , Curva ROC , Timócitos/citologia , Recombinação V(D)J
3.
Mol Cell ; 70(1): 21-33.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576529

RESUMO

Immunoglobulin heavy-chain (IgH) genes are assembled by DNA rearrangements that juxtapose a variable (VH), a diversity (DH), and a joining (JH) gene segment. Here, we report that in the absence of intergenic control region 1 (IGCR1), the intronic enhancer (Eµ) associates with the next available CTCF binding site located close to VH81X via putative heterotypic interactions involving YY1 and CTCF. The alternate Eµ/VH81X loop leads to formation of a distorted recombination center and altered DH rearrangements and disrupts chromosome conformation that favors distal VH recombination. Cumulatively, these features drive highly skewed, Eµ-dependent recombination of VH81X. Sequential deletion of CTCF binding regions on IGCR1-deleted alleles suggests that they influence recombination of single proximal VH gene segments. Our observations demonstrate that Eµ interacts differently with IGCR1- or VH-associated CTCF binding sites and thereby identify distinct roles for insulator-like elements in directing enhancer activity.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Intergênico/genética , Elementos Facilitadores Genéticos , Genes de Cadeia Pesada de Imunoglobulina , Loci Gênicos , Região Variável de Imunoglobulina/genética , Células Precursoras de Linfócitos B/metabolismo , Recombinação Genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular , DNA Intergênico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Conformação de Ácido Nucleico , Células Precursoras de Linfócitos B/imunologia , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
4.
J Exp Med ; 211(11): 2297-306, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25288395

RESUMO

Variable (V) genes of immunoglobulins undergo somatic hypermutation by activation-induced deaminase (AID) to generate amino acid substitutions that encode antibodies with increased affinity for antigen. Hypermutation is restricted to germinal center B cells and cannot be recapitulated in ex vivo-activated splenic cells, even though the latter express high levels of AID. This suggests that there is a specific feature of antigen activation in germinal centers that recruits AID to V genes which is absent in mitogen-activated cultured cells. Using two Igh knock-in mouse models, we found that RNA polymerase II accumulates in V regions in B cells after both types of stimulation for an extended distance of 1.2 kb from the TATA box. The paused polymerases generate abundant single-strand DNA targets for AID. However, there is a distinct accumulation of the initiating form of polymerase, along with the transcription cofactor Spt5 and AID, in the V region from germinal center cells, which is totally absent in cultured cells. These data support a model where mutations are prevalent in germinal center cells, but not in ex vivo cells, because the initiating form of polymerase is retained, which affects Spt5 and AID recruitment.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Região Variável de Imunoglobulina , Hipermutação Somática de Imunoglobulina , Fatores de Elongação da Transcrição/metabolismo , Regiões 3' não Traduzidas , Animais , Citidina Desaminase/genética , DNA Polimerase II/metabolismo , DNA de Cadeia Simples/metabolismo , Feminino , Ordem dos Genes , Loci Gênicos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Modelos Biológicos , Deleção de Sequência
5.
Nat Immunol ; 13(12): 1205-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23104096

RESUMO

Genes encoding immunoglobulin heavy chains (Igh) are assembled by rearrangement of variable (V(H)), diversity (D(H)) and joining (J(H)) gene segments. Three critical constraints govern V(H) recombination. These include timing (V(H) recombination follows D(H) recombination), precision (V(H) gene segments recombine only to DJ(H) junctions) and allele specificity (V(H) recombination is restricted to DJ(H)-recombined alleles). Here we provide a model for these universal features of V(H) recombination. Analyses of DJ(H)-recombined alleles showed that DJ(H) junctions were selectively epigenetically marked, became nuclease sensitive and bound RAG recombinase proteins, which thereby permitted D(H)-associated recombination signal sequences to initiate the second step of Igh gene assembly. We propose that V(H) recombination is precise, because these changes did not extend to germline D(H) segments located 5' of the DJ(H) junction.


Assuntos
Linfócitos B/metabolismo , Epigênese Genética , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Genes de Cadeia Pesada de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/genética , Região de Junção de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Animais , Linhagem Celular , Cromatina/metabolismo , Histonas/metabolismo , Camundongos , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Recombinases/metabolismo , Recombinação Genética
6.
BMC Genomics ; 13: 451, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22947103

RESUMO

BACKGROUND: Non-coding DNA in and around the human Amyloid Precursor Protein (APP) gene that is central to Alzheimer's disease (AD) shares little sequence similarity with that of appb in zebrafish. Identifying DNA domains regulating expression of the gene in such situations becomes a challenge. Taking advantage of the zebrafish system that allows rapid functional analyses of gene regulatory sequences, we previously showed that two discontinuous DNA domains in zebrafish appb are important for expression of the gene in neurons: an enhancer in intron 1 and sequences 28-31 kb upstream of the gene. Here we identify the putative transcription factor binding sites responsible for this distal cis-acting regulation, and use that information to identify a regulatory region of the human APP gene. RESULTS: Functional analyses of intron 1 enhancer mutations in enhancer-trap BACs expressed as transgenes in zebrafish identified putative binding sites of two known transcription factor proteins, E4BP4/ NFIL3 and Forkhead, to be required for expression of appb. A cluster of three E4BP4 sites at -31 kb is also shown to be essential for neuron-specific expression, suggesting that the dependence of expression on upstream sequences is mediated by these E4BP4 sites. E4BP4/ NFIL3 and XFD1 sites in the intron enhancer and E4BP4/ NFIL3 sites at -31 kb specifically and efficiently bind the corresponding zebrafish proteins in vitro. These sites are statistically over-represented in both the zebrafish appb and the human APP genes, although their locations are different. Remarkably, a cluster of four E4BP4 sites in intron 4 of human APP exists in actively transcribing chromatin in a human neuroblastoma cell-line, SHSY5Y, expressing APP as shown using chromatin immunoprecipitation (ChIP) experiments. Thus although the two genes share little sequence conservation, they appear to share the same regulatory logic and are regulated by a similar set of transcription factors. CONCLUSION: The results suggest that the clock-regulated and immune system modulator transcription factor E4BP4/ NFIL3 likely regulates the expression of both appb in zebrafish and APP in humans. It suggests potential human APP gene regulatory pathways, not on the basis of comparing DNA primary sequences with zebrafish appb but on the model of conservation of transcription factors.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA Intergênico/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Sequências Reguladoras de Ácido Nucleico/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Cromossomos Artificiais Bacterianos/genética , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mutagênese , Neurônios/metabolismo , Notocorda/metabolismo , Plasmídeos/genética , Peixe-Zebra
7.
Mol Cell ; 37(6): 865-78, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20347428

RESUMO

FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Instabilidade Genômica , Histonas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Sequência de Aminoácidos , Animais , Linhagem Celular , Galinhas , DNA/genética , Dano ao DNA , DNA Helicases/química , DNA Helicases/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas de Grupos de Complementação da Anemia de Fanconi , Humanos , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alinhamento de Sequência , Troca de Cromátide Irmã
8.
Nat Immunol ; 10(9): 992-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19648923

RESUMO

The differentiation of activated CD4(+) T cells into the T helper type 1 (T(H)1) or T(H)2 fate is regulated by cytokines and the transcription factors T-bet and GATA-3. Whereas interleukin 12 (IL-12) produced by antigen-presenting cells initiates the T(H)1 fate, signals that initiate the T(H)2 fate are not completely characterized. Here we show that early GATA-3 expression, required for T(H)2 differentiation, was induced by T cell factor 1 (TCF-1) and its cofactor beta-catenin, mainly from the proximal Gata3 promoter upstream of exon 1b. This activity was induced after T cell antigen receptor (TCR) stimulation and was independent of IL-4 receptor signaling through the transcription factor STAT6. Furthermore, TCF-1 blocked T(H)1 fate by negatively regulating interferon-gamma (IFN-gamma) expression independently of beta-catenin. Thus, TCF-1 initiates T(H)2 differentiation of activated CD4(+) T cells by promoting GATA-3 expression and suppressing IFN-gamma expression.


Assuntos
Fator de Transcrição GATA3/genética , Interferon gama/biossíntese , Fator 1 de Transcrição de Linfócitos T/fisiologia , Células Th2/fisiologia , Animais , Diferenciação Celular , Interleucina-12/biossíntese , Interleucina-4/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores Notch/fisiologia , beta Catenina/fisiologia
9.
Mol Cell Biol ; 29(14): 3941-52, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19451230

RESUMO

To understand how DEXD/H-box proteins recognize and interact with their cellular substrates, we have been studying Prp28p, a DEXD/H-box splicing factor required for switching the U1 snRNP with the U6 snRNP at the precursor mRNA (pre-mRNA) 5' splice site. We previously demonstrated that the requirement for Prp28p can be eliminated by mutations that alter either the U1 snRNA or the U1C protein, suggesting that both are targets of Prp28p. Inspired by this finding, we designed a bypass genetic screen to specifically search for additional, novel targets of Prp28p. The screen identified Prp42p, Snu71p, and Cbp80p, all known components of commitment complexes, as well as Ynl187p, a protein of uncertain function. To examine the role of Ynl187p in splicing, we carried out extensive genetic and biochemical analysis, including chromatin immunoprecipitation. Our data suggest that Ynl187p acts in concert with U1C and Cbp80p to help stabilize the U1 snRNP-5' splice site interaction. These findings are discussed in the context of DEXD/H-box proteins and their role in vivo as well as the potential need for more integral U1-snRNP proteins in governing the fungal 5' splice site RNA-RNA interaction compared to the number of U1 snRNP proteins needed by metazoans.


Assuntos
Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Fúngico/genética , Genes Fúngicos , Genes Supressores , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas de Ligação ao Cap de RNA , Precursores de RNA/genética , Sítios de Splice de RNA , RNA Fúngico/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 284(12): 7533-41, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19158090

RESUMO

ATP-dependent chromatin-remodeling enzymes are linked to changes in gene expression; however, it is not clear how the multiple remodeling enzymes found in eukaryotes differ in function and work together. In this report, we demonstrate that the ATP-dependent remodeling enzymes ACF and Mi2beta can direct consecutive, opposing chromatin-remodeling events, when recruited to chromatin by different transcription factors. In a cell-free system based on the immunoglobulin heavy chain gene enhancer, we show that TFE3 induces a DNase I-hypersensitive site in an ATP-dependent reaction that requires ACF following transcription factor binding to chromatin. In a second step, PU.1 directs Mi2beta to erase an established DNase I-hypersensitive site, in an ATP-dependent reaction subsequent to PU.1 binding to chromatin, whereas ACF will not support erasure. Erasure occurred without displacing the transcription factor that initiated the site. Other tested enzymes were unable to erase the DNase I-hypersensitive site. Establishing and erasing the DNase I-hypersensitive site required transcriptional activation domains from TFE3 and PU.1, respectively. Together, these results provide important new mechanistic insight into the combinatorial control of chromatin structure.


Assuntos
Autoantígenos/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , DNA Helicases/metabolismo , Desoxirribonuclease I/química , Elementos Facilitadores Genéticos/fisiologia , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autoantígenos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Cromatina/química , DNA Helicases/química , Drosophila melanogaster , Humanos , Cadeias Pesadas de Imunoglobulinas/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Estrutura Terciária de Proteína/fisiologia , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/química , Especificidade por Substrato , Transativadores/química , Transativadores/metabolismo
11.
Mol Cell ; 31(5): 641-9, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775324

RESUMO

Maintenance of genomic integrity during antigen receptor gene rearrangements requires (1) regulated access of the V(D)J recombinase to specific loci and (2) generation of double-strand DNA breaks only after recognition of a pair of matched recombination signal sequences (RSSs). Here we recapitulate both key aspects of regulated recombinase accessibility in a cell-free system using plasmid substrates assembled into chromatin. We show that recruitment of the SWI/SNF chromatin-remodeling complex to both RSSs increases coupled cleavage by RAG1 and RAG2 proteins. SWI/SNF functions by altering local chromatin structure in the absence of RNA polymerase II-dependent transcription or histone modifications. These observations demonstrate a direct role for cis-sequence-regulated local chromatin remodeling in RAG1/2-dependent initiation of V(D)J recombination.


Assuntos
Sequência de Bases , Proteínas de Homeodomínio/metabolismo , Recombinação Genética , Transcrição Gênica , Animais , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Rearranjo Gênico , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Biol Chem ; 283(9): 5728-37, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18165222

RESUMO

Nucleophosmin/B23 is a multifunctional phosphoprotein that is overexpressed in cancer cells and has been shown to be involved in both positive and negative regulation of transcription. In this study, we first identified GCN5 acetyltransferase as a B23-interacting protein by mass spectrometry, which was then confirmed by in vivo co-immunoprecipitation. An in vitro assay demonstrated that B23 bound the PCAF-N domain of GCN5 and inhibited GCN5-mediated acetylation of both free and mononucleosomal histones, probably through interfering with GCN5 and masking histones from being acetylated. Mitotic B23 exhibited higher inhibitory activity on GCN5-mediated histone acetylation than interphase B23. Immunodepletion experiments of mitotic extracts revealed that phosphorylation of B23 at Thr 199 enhanced the inhibition of GCN5-mediated histone acetylation. Moreover, luciferase reporter and microarray analyses suggested that B23 attenuated GCN5-mediated transactivation in vivo. Taken together, our studies suggest a molecular mechanism of B23 in the mitotic inhibition of GCN5-mediated histone acetylation and transactivation.


Assuntos
Histonas/metabolismo , Proteínas Nucleares/metabolismo , Ativação Transcricional/fisiologia , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Histonas/genética , Humanos , Camundongos , Mitose/fisiologia , Células NIH 3T3 , Proteínas Nucleares/genética , Nucleofosmina , Nucleossomos/genética , Nucleossomos/metabolismo , Fosforilação , Estrutura Terciária de Proteína/fisiologia , Fatores de Transcrição de p300-CBP/genética
13.
Proc Natl Acad Sci U S A ; 101(41): 14841-6, 2004 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-15465910

RESUMO

The U1 small nuclear ribonucleoprotein particle U1C protein has a zinc finger-like structure (C2H2 motif) at its N terminus, which is conserved from yeast to humans. Mutations of amino acid L13 within this domain rescue the essential function of the helicase protein Prp28p. Prp28p has been implicated in unwinding the 5' splice site (5'ss)-U1 small nuclear RNA (snRNA) base-pairing, to allow replacement of U1 snRNA with U6 snRNA during spliceosome assembly. The L13 phenotype has therefore been interpreted to indicate that WT U1C contributes to 5'ss-U1 snRNA stabilization by binding to the RNA duplex. We show here that an L13 mutant extract cannot form stable base-pairing at room temperature but is permissive for U1-5'ss base-pairing at low temperature. This phenotype is similar to that of a U1C-depleted extract, indicating that the U1C L13 mutation is a strong loss-of-function mutation. The two mutant extracts are unlike a WT extract, which undergoes stable pairing at room temperature but little or no pairing at low temperature. Taken together with previous results and the failure to observe a direct interaction of U1C with the U1-5'ss duplex, the data suggest that U1C contributes indirectly to stable U1-5'ss base-pairing under permissive conditions. A model is proposed to account for the L13 results.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/genética , Cinética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Termodinâmica
14.
Nature ; 419(6902): 86-90, 2002 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12214237

RESUMO

Splicing of precursor messenger RNA takes place in the spliceosome, a large RNA/protein macromolecular machine. Spliceosome assembly occurs in an ordered pathway in vitro and is conserved between yeast and mammalian systems. The earliest step is commitment complex formation in yeast or E complex formation in mammals, which engages the pre-mRNA in the splicing pathway and involves interactions between U1 small nuclear ribonucleoprotein (snRNP) and the pre-mRNA 5' splice site. Complex formation depends on highly conserved base pairing between the 5' splice site and the 5' end of U1 snRNA, both in vivo and in vitro. U1 snRNP proteins also contribute to U1 snRNP activity. Here we show that U1 snRNP lacking the 5' end of its snRNA retains 5'-splice-site sequence specificity. We also show that recombinant yeast U1C protein, a U1 snRNP protein, selects a 5'-splice-site-like sequence in which the first four nucleotides, GUAU, are identical to the first four nucleotides of the yeast 5'-splice-site consensus sequence. We propose that a U1C 5'-splice-site interaction precedes pre-mRNA/U1 snRNA base pairing and is the earliest step in the splicing pathway.


Assuntos
Conformação de Ácido Nucleico , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Pareamento de Bases , Sequência de Bases , Extratos Celulares , Ficusina/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/genética , Especificidade por Substrato , Temperatura , Leveduras/citologia , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...