Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(8): 220150, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35958090

RESUMO

The influence of microstructure of silica-enhanced cement on the mechanical performance of cement is difficult to describe. In this study, we used the scanning electron microscope and image processing method to investigate the relationship between the complicity of cement microstructure and compressive strength under various temperatures and curing times. Fractal dimension was applied to describe the complicity of silica-enhanced cement. The relationships among compressive strength, fractal dimension, temperature, curing time and pore structure of cement were identified. The results show that curing time directly controls the complicity of microstructure of silica-enhanced cement and compressive strength by altering the pore orientation and macropore ratio in silica-enhanced cement. The curing temperature affects the complicity of cement microstructure and compressive strength indirectly by changing the ratio of micropore and small pore. The fractal dimension of silica-enhanced cement shows good correlation with compressive strength. Pore size distribution is the most important factor that influences the complicity of cement matrix and compressive strength of silica-enhanced cement. When building up the macroscopic mechanical performance model of silica-enhanced cement, we should consider the influence of pore size distribution in cement under different curing temperatures and times on the complicity of cement microstructure.

2.
R Soc Open Sci ; 9(2): 211170, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35223053

RESUMO

During the process of well cementing in deep water, the cement slurry experiences a wide range of temperature variation from low temperature at seabed to high temperature in downhole. The elevated temperature affects the rheology of cement slurry. The change of rheology of cement slurry could influence the safety of cementing operation. The aim of this paper is to develop a new kind of hydrophobically associating water-soluble polymer (NHAWP) as an additive to prepare a constant rheology oil well cement slurry, which can be used at temperature range from 4°C to 90°C. The acrylamide, 2-acrylamide-2-methylpropionic acid and stearyl methylacrylate were applied to synthesize the NHAWP by the inverse microemulsion polymerization. Test results indicate that the critical association temperature of NHAWP is 45°C. The critical association temperature is independent of NHAWP concentration, salt concentration and alkalinity of solution. When the temperature is below 45°C, NHAWP shows little influence on the viscosity of solution. When the temperature is above 45°C, the NHAWP forms spatial network structure by intermolecular hydrophobic association and thus increases the viscosity of solution significantly. The NHAWP also displays good thermal stability and excellent salt and alkali resistance properties. In addition, the NHAWP shows nearly no negative influence on the basic properties of cement slurry, which indicates that the NHAWP can be used as a constant rheology agent to prepare a cement slurry with constant rheology in the temperature range of 4°C to 90°C.

3.
Environ Res ; 209: 112817, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092742

RESUMO

Adsorption of lead (Pb2+) onto the montmorillonite (Mt) surface is one of the key approaches to remove Pb2+ in geological and environmental engineering. Temperature and initial Pb2+ concentration are two essential factors that influence the adsorption capacity of Mt on absorbing Pb2+. However, the nanoscale governing mechanism of temperature and initial concentration on Pb2+ adsorbing of Mt is still unclear. This research performed comprehensively molecular dynamics (MD) simulations to investigate how temperature and initial concentration affect the dynamic Pb2+ adsorption of Mt nanopore. The Pb2+ removal ratio shows a two-stage variation with the increase of initial Pb2+ concentration. Temperature controls the maximum initial Pb2+ concentration for complete Pb2+ removal by changing the maximum adsorption energy of Mt. Temperature also influences the maximum adsorption capacity and Pb2+ removal ratio of Mt nanopore indirectly by changing diffusion and hydration state of Pb2+. The initial Pb2+ concentration corresponding to the maximum adsorption energy coincides with the maximum initial Pb2+ concentration determined by the Pb2+ removal ratio. Lower adsorption energy and higher level of hydration and diffusion make Pb2+ absorbing on Mt surface become more difficult, reducing the Pb2+ adsorbing capacity of Mt. The initial Pb2+ concentration influences adsorption capacity and Pb2+ removal ratio not only via altering the quantity of Pb2+ but also through controlling the adsorption energy of Mt, as well as the diffusion and hydration state of Pb2+. With the increase of initial Pb2+ concentration, the hydration of Pb2+ is weakened while the adsorption energy of Mt and diffusion of Pb2+ are enhanced.


Assuntos
Nanoporos , Poluentes Químicos da Água , Adsorção , Bentonita , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Temperatura , Poluentes Químicos da Água/análise
4.
R Soc Open Sci ; 7(2): 191230, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32257308

RESUMO

This research work designed a novel mud-cake solidification method to improve the zonal isolation of oil and gas wells. The calculation methodology of mud-cake compressive strength was proposed. The optimal formula of activator and solid precursors, the proper activating time and the best activator concentration were determined by the compressive strength test. The effects of solid precursors on the properties of drilling fluid were evaluated. Test results show that the respective percentage of bentonite, metakaolin, slag and activator is 1 : 1 : 0.3 : 0.8, as well as the optimum ratio of Na2SiO3/NaOH is 40 : 1. The optimum concentration of activator is 0.21 and the activating time should be more than 10 min. The solid precursors did not show any bad influence on the rheological property of drilling fluids. Even though the compressive strength decreased when the solid precursors blended with barite, the strength values can still achieve 8 MPa. The reaction of metakaolin and activator formed cross-link structure in the mud-cake matrix, which enhanced the connection of the loose bentonite particles, lead to the significant enhancement of shear bonding strength and hydraulic bonding strength. This mud-cake solidification method provides a new approach to improve the quality of zonal isolation.

5.
Chemistry ; 25(21): 5555-5564, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30695114

RESUMO

Here, the reduction chemistry of mono- and binuclear α-diimine-Re(CO)3 complexes with proton responsive ligands and their application in the electrochemically-driven CO2 reduction catalysis are presented. The work was aimed to investigate the impact of 1) two metal ions in close proximity and 2) an internal proton source on catalysis. Therefore, three different Re complexes, a binuclear one with a central phenol unit, 3, and two mononuclear, one having a central phenol unit, 1, and one with a methoxy unit, 2, were utilised. All complexes are active in the CO2 -to-CO conversion and CO is always the major product. The catalytic rate constant kcat for all three complexes is much higher and the overpotential is lower in DMF/water mixtures than in pure DMF (DMF=N,N-dimethylformamide). Cyclic voltammetry (CV) studies in the absence of substrate revealed that this is due to an accelerated chloride ion loss after initial reduction in DMF/water mixtures in comparison to pure DMF. Chloride ion loss is necessary for subsequent CO2 binding and this step is around ten times faster in the presence of water [2: kCl (DMF)≈1.7 s-1 ; kCl (DMF/H2 O)≈20 s-1 ]. The binuclear complex 3 with a proton responsive phenol unit is more active than the mononuclear complexes. In the presence of water, the observed rate constant kobs for 3 is four times higher than of 2, in the absence of water even ten times. Thus, the two metal centres are beneficial for catalysis. Lastly, the investigation showed that the phenol unit has no impact on the rate of the catalysis, it even slows down the CO2 -to-CO conversion. This is due to an unproductive, competitive side reaction: After initial reduction, 1 and 3 loose either Cl- or undergo a reductive OH deprotonation forming a phenolate unit. The phenolate could bind to the metal centre blocking the sixth coordination site for CO2 activation. In DMF, O-H bond breaking and Cl- ion loss have similar rate constants [1: kCl (DMF)≈2 s-1 , kOH ≈1.5 s-1 ], in water/DMF Cl- loss is much faster. Thus, the effect on the catalytic rate is more pronounced in DMF. However, the acidic protons lower the overpotential of the catalysis by about 150 mV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...