Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 285: 117244, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965857

RESUMO

A green approach using hydrogen peroxide (H2O2) to intensify the fuel properties of spent coffee grounds (SCGs) through torrefaction is developed in this study to minimize environmental pollution. Meanwhile, a neural network (NN) is used to minimize bulk density at different combinations of operating conditions to show the accurate and reliable model of NN (R2 = 0.9994). The biochar produced from SCGs torrefied at temperatures of 200-300 °C, duration of 30-60 min, and H2O2 concentrations of 0-100 wt% is examined. The results reveal that the higher heating value (HHV) of biochar increases with rising temperature, duration, or H2O2 concentration, whereas the bulk density has an opposite trend. The HHV, ignition temperature, and bulk density of biochar from torrefaction at 230 °C for 30 min with a 100 wt% H2O2 solution (230-100%-TSCG) are 27.00 MJ∙kg-1, 292 °C, and 120 kg∙m-3, respectively. This HHV accounts for a 29% improvement compared to that of untorrefied SCG. The contact angle (126°), water activity (0.51 aw), and moisture content (7.69%) of the optimized biochar indicate that it has higher resistance against biodegradation, and thereby can be stored longer. Overall, H2O2 is a green treatment additive for SCGs solid fuel. This study has successfully produced biochar with greater HHV and low bulk density at low temperatures. The green additive development can effectively reduce environmental pollutants and upgrade wastes into resources, and achieve "3E", namely, environmental (non-polluting green additives), energy (biofuel), and circular economy (waste upgrade). In addition, the produced biochar has great potential in the fields of bioadsorbents and soil amendments.


Assuntos
Café , Peróxido de Hidrogênio , Carvão Vegetal , Poluição Ambiental
2.
Chemosphere ; 275: 129999, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33639554

RESUMO

A novel approach for upgrading the pore volume of biochar at low temperatures using a green additive of sodium bicarbonate (NaHCO3) is developed in this study. The biochar was produced from spent coffee grounds (SCGs) torrefied at different temperatures (200-300 °C) with different residence times (30-60 min) and NaHCO3 concentrations (0-8.3 wt%). The results reveal that the total pore volume of biochar increases with rising temperature, residence time, or NaHCO3 aqueous solution concentration, whereas the bulk density has an opposite trend. The specific surface area and total pore volume of pore-forming SCG from 300 °C torrefaction for 60 min with an 8.3 wt% NaHCO3 solution (300-TP-SCG) are 42.050 m2 g-1 and 0.1389 cm3·g-1, accounting for the improvements of 141% and 76%, respectively, compared to the parent SCG. The contact angle (126°) and water activity (0.48 aw) of 300-TP-SCG reveal that it has long storage time. The CO2 uptake capacity of 300-TP-SCG is 0.32 mmol g-1, rendering a 39% improvement relative to 300-TSCG, namely, SCG torrefied at 300 °C for 60 min. 300-TP-SCG has higher HHV (28.31 MJ·kg-1) and lower ignition temperature (252 °C). Overall, it indicates 300-TP-SCG is a potential fuel substitute for coal. This study has successfully produced mesoporous biochar at low temperatures to fulfill "3E", namely, energy (biofuel), environment (biowaste reuse solid waste), and circular economy (bioadsorbent).


Assuntos
Café , Bicarbonato de Sódio , Carvão Vegetal , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...