Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 53(5): 2791-2804, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35286273

RESUMO

Distributed differential evolution (DDE) is an efficient paradigm that adopts multiple populations for cooperatively solving complex optimization problems. However, how to allocate fitness evaluation (FE) budget resources among the distributed multiple populations can greatly influence the optimization ability of DDE. Therefore, this article proposes a novel three-layer DDE framework with adaptive resource allocation (DDE-ARA), including the algorithm layer for evolving various differential evolution (DE) populations, the dispatch layer for dispatching the individuals in the DE populations to different distributed machines, and the machine layer for accommodating distributed computers. In the DDE-ARA framework, three novel methods are further proposed. First, a general performance indicator (GPI) method is proposed to measure the performance of different DEs. Second, based on the GPI, a FE allocation (FEA) method is proposed to adaptively allocate the FE budget resources from poorly performing DEs to well-performing DEs for better search efficiency. This way, the GPI and FEA methods achieve the ARA in the algorithm layer. Third, a load balance strategy is proposed in the dispatch layer to balance the FE burden of different computers in the machine layer for improving load balance and algorithm speedup. Moreover, theoretical analyses are provided to show why the proposed DDE-ARA framework can be effective and to discuss the lower bound of its optimization error. Extensive experiments are conducted on all the 30 functions of CEC 2014 competitions at 10, 30, 50, and 100 dimensions, and some state-of-the-art DDE algorithms are adopted for comparisons. The results show the great effectiveness and efficiency of the proposed framework and the three novel methods.

2.
Imeta ; 2(3): e110, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38867935

RESUMO

The impact of antibacterial detergent on microbial exchanges and its subsequent effect on malodor in used towels were examined. Homogenization of microbiome among postwashed and indoor dried towels that was dominated by known malodor-producing bacteria. The microbial exchange was attenuated, and the abundance of malodor-producing bacteria was reduced in towels laundered with antibacterial detergent. Reduction of malodorous volatile organic compounds produced from towels laundered with antibacterial detergent.

3.
IEEE Trans Cybern ; 50(10): 4454-4468, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545754

RESUMO

Supply chain network design (SCND) is a complicated constrained optimization problem that plays a significant role in the business management. This article extends the SCND model to a large-scale SCND with uncertainties (LUSCND), which is more practical but also more challenging. However, it is difficult for traditional approaches to obtain the feasible solutions in the large-scale search space within the limited time. This article proposes a cooperative coevolutionary bare-bones particle swarm optimization (CCBBPSO) with function independent decomposition (FID), called CCBBPSO-FID, for a multiperiod three-echelon LUSCND problem. For the large-scale issue, binary encoding of the original model is converted to integer encoding for dimensionality reduction, and a novel FID is designed to efficiently decompose the problem. For obtaining the feasible solutions, two repair methods are designed to repair the infeasible solutions that appear frequently in the LUSCND problem. A step translation method is proposed to deal with the variables out of bounds, and a labeled reposition operator with adaptive probabilities is designed to repair the infeasible solutions that violate the constraints. Experiments are conducted on 405 instances with three different scales. The results show that CCBBPSO-FID has an evident superiority over contestant algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...