Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 42(8): e0013122, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35913156

RESUMO

The association of AMP-activated protein kinase (AMPK) with membranes plays a critical role in the regulation of AMPK activation and function. Protein lipid modification, including palmitoylation, myristoylation, and farnesyation, constitutes a crucial mechanism in the regulation of protein dynamic interactions with membranes. Among the three subunits of the AMPK heterotrimeric complex, the structural subunit AMPKß is myristoylated and the catalytic subunit AMPKα is palmitoylated. Here, we report the characterization of AMPKα palmitoylation. We found that AMKPα was palmitoylated at Cys209 and Cys543, and this was required for AMPK activation and subcellular membrane compartmentalization. To understand the regulation of AMPKα palmitoylation, we have identified DHHC17 as a candidate palmitoyltransferase for AMPKα and found that DHHC17, by palmitoylating AMPKα, modulated AMPK membrane association and activation in response to energy stress. To determine the role of DHHC17 in cell function, we generated DHHC17 liver-specific knockout mice and found that inactivation of DHHC17 in the mouse liver impaired AMPK activation and hepatic autophagy and caused a type 2 diabetes-like syndrome. Overall, our studies demonstrate that AMPKα palmitoylation plays a critical role in AMPK activation and that DHHC17, through its modulation of AMPK signaling, constitutes a new regulator of hepatic metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Lipoilação , Camundongos , Processamento de Proteína Pós-Traducional , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 116(28): 14039-14048, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239343

RESUMO

Most normal and tumor cells are protected from tumor necrosis factor α (TNFα)-induced apoptosis. Here, we identify the MAP3 kinase tumor progression locus-2 (TPL2) as a player contributing to the protection of a subset of tumor cell lines. The combination of TPL2 knockdown and TNFα gives rise to a synthetic lethality phenotype via receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-dependent and -independent mechanisms. Whereas wild-type TPL2 rescues the phenotype, its kinase-dead mutant does not. Comparison of the molecular events initiated by small interfering RNA for TPL2 (siTPL2) ± TNFα in treatment-sensitive and -resistant lines revealed that the activation of caspase-8, downstream of miR-21-5p and cFLIP, is the dominant TPL2-dependent event. More important, comparison of the gene expression profiles of all of the tested cell lines results in the clustering of sensitive and resistant lines into distinct groups, providing proof of principle for the feasibility of generating a predictive tool for treatment sensitivity.


Assuntos
Carcinoma/genética , Inibidores de Caspase/farmacologia , MAP Quinase Quinase Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fator de Necrose Tumoral alfa/genética , Apoptose/genética , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Caspase 8/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Macrófagos/metabolismo , MicroRNAs/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Mutações Sintéticas Letais/genética
3.
J Biol Chem ; 292(7): 2979-2991, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28057756

RESUMO

Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane plays a key role in the dynamic regulation of glucose homeostasis. We recently showed that this process is critically dependent on palmitoylation of Glut4 at Cys-223. To gain further insights into the regulation of Glut4 palmitoylation, we set out to identify the palmitoyl acyltransferase (PAT) involved. Here we report that among 23 mammalian DHHC proteins, DHHC7 is the major Glut4 PAT, based on evidence that ectopic expression of DHHC7 increased Glut4 palmitoylation, whereas DHHC7 knockdown in 3T3-L1 adipocytes and DHHC7 KO in adipose tissue and muscle decreased Glut4 palmitoylation. Moreover, inactivation of DHHC7 suppressed insulin-dependent Glut4 membrane translocation in both 3T3-L1 adipocytes and primary adipocytes. Finally, DHHC7 KO mice developed hyperglycemia and glucose intolerance, thereby confirming that DHHC7 represents the principal PAT for Glut4 and that this mechanism is essential for insulin-regulated glucose homeostasis.


Assuntos
Aciltransferases/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Ácido Palmítico/metabolismo , Células 3T3-L1 , Aciltransferases/genética , Adipócitos/metabolismo , Animais , Membrana Celular/metabolismo , Teste de Tolerância a Glucose , Células HEK293 , Humanos , Hiperglicemia/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico
4.
J Biol Chem ; 291(53): 27371-27386, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27875292

RESUMO

The γ2 subunit of GABA type A receptors (GABAARs) is thought to be subject to palmitoylation by both Golgi-associated DHHC-type zinc finger protein (GODZ; also known as DHHC3) and its paralog Sertoli cell gene with a zinc finger domain-ß (SERZ-ß; DHHC7) based on overexpression of enzymes and substrates in heterologous cells. Here we have further investigated the substrate specificity of these enzymes by characterization of GODZ and SERZ-ß knock-out (KO) mice as well as double KO (DKO) neurons. Palmitoylation of γ2 and a second substrate, growth-associated protein of 43 kDa, that is independently implicated in trafficking of GABAARs was significantly reduced in brain of GODZ KO versus wild-type (WT) mice but unaltered in SERZ-ß KO mice. Accumulation of GABAARs at synapses, GABAergic innervation, and synaptic function were reduced in GODZ KO and DKO neurons to a similar extent, indicating that SERZ-ß does not contribute to palmitoylation or trafficking of GABAARs even in the absence of GODZ. Notably, these effects were seen only when mutant neurons were grown in competition with WT neurons, thereby mimicking conditions of shRNA-transfected neurons previously used to characterize GODZ. However, GABA-evoked whole-cell currents of DKO neurons and the GABAAR cell surface expression in DKO neurons and GODZ or SERZ-ß KO brain slices were unaltered, indicating that GODZ-mediated palmitoylation selectively controls the pool of receptors at synapses. The different substrate specificities of GODZ and SERZ-ß in vivo were correlated with their differential localization to cis- versus trans-Golgi compartment, a mechanism that was compromised by overexpression of GODZ.


Assuntos
Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/metabolismo , Palmitatos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de GABA-A/metabolismo , Animais , Encéfalo/citologia , Células Cultivadas , Feminino , Complexo de Golgi/metabolismo , Lipoilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Transporte Proteico , Sinapses , Dedos de Zinco
5.
J Biol Chem ; 291(31): 16150-61, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226625

RESUMO

Elmo2, a member of the Elmo protein family, has been implicated in the regulation of Rac1 and Akt activation. Recently, we found that Elmo2 specifically interacts with ClipR-59. Because Akt and Rac1 have been implicated in insulin dependent Glut4 membrane translocation, we hypothesize here that Elmo2 may play a role in insulin-dependent Glut4 membrane translocation. Accordingly, we found that overexpression of Elmo2 enhanced, whereas its knockdown suppressed, insulin-dependent Glut4 membrane translocation in both 3T3-L1 adipocytes and L6 skeletal muscle cells. We also examined whether Elmo2 contributes to the insulin-mediated activation of Rac1 and Akt. We found that Elmo2 is required for insulin-induced Rac1 GTP loading, but not AKT activation, in L6 cells induced by insulin. Instead, Elmo2 is required to promote the insulin-induced membrane association of Akt. Together, our studies demonstrate that Elmo2 is a new regulator of insulin-dependent Glut4 membrane translocation through modulating Rac1 activity and Akt membrane compartmentalization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Proteínas do Citoesqueleto/genética , Transportador de Glucose Tipo 4/genética , Humanos , Insulina/genética , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Adipocyte ; 4(4): 286-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451285

RESUMO

By regulating Akt membrane compartmentalization, ClipR-59 modulates adipocyte glucose transport. To elucidate the role of ClipR-59 in the regulation of whole body glucose homeostasis, we have generated adipose tissue specific transgenic mice and examined how forcing expression of ClipR-59 in adipose tissue affects body glucose homeostasis. We found that ClipR-59 adipose transgenic mice showed lower blood glucose level with increased glucose tolerance and enhanced insulin sensitivity. Moreover, ClipR-59 adipose transgenic mice were lean with reduced fat mass and against diet induced obesity. Finally, we examined the potential impact of ClipR-59 on adipose endocrine function and found that ClipR-59 expression enhanced adiponectin secretion in both 3T3-L1 adipocytes and adipose tissue, accompanied with increased circulating adiponectin and enhanced AMPKα phosphorylation at Thr172 in adipose tissue and skeletal muscle. Overall, these studies demonstrate that ClipR-59 is likely an important regulator of body glucose homeostasis and adipocyte function.

7.
Biochem Biophys Res Commun ; 460(3): 709-14, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25824042

RESUMO

Recently, we identified Glut4 as a palmitoylated protein in adipocytes. To understand the role of Glut4 palmitoylation in Glut4 membrane trafficking, a process that is essential for maintenance of whole body glucose homeostasis, we have characterized Glut4 palmitoylation. We found that Glut4 is palmitoylated at Cys223 and Glut4 palmitoylation at Cys223 is essential for insulin dependent Glut4 membrane translocation as substitution of Cys223 with a serine residue in Glut4 (C223S Glut4) diminished Glut4 responsiveness to insulin in membrane translocation in both adipocytes and CHO-IR cells. We have examined C223S Glut4 subcellular localization and observed that it was absence from tubular-vesicle structure, where insulin responsive Glut4 vesicles were presented. Together, our studies uncover a novel mechanism under which Glut4 palmitoylation regulates Glut4 sorting to insulin responsive vesicles, thereby insulin-dependent Glut4 membrane translocation.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Lipoilação , Células 3T3-L1 , Animais , Membrana Celular/metabolismo , Transportador de Glucose Tipo 4/química , Camundongos , Transporte Proteico
8.
J Biol Chem ; 290(10): 6130-40, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25572395

RESUMO

Recent studies using ClipR-59 knock-out mice implicated this protein in the regulation of muscle function. In this report, we have examined the role of ClipR-59 in muscle differentiation and found that ClipR-59 knockdown in C2C12 cells suppressed myoblast fusion. To elucidate the molecular mechanism whereby ClipR-59 regulates myoblast fusion, we carried out a yeast two-hybrid screen using ClipR-59 as the bait and identified Elmo2, a member of the Engulfment and cell motility protein family, as a novel ClipR-59-associated protein. We showed that the interaction between ClipR-59 and Elmo2 was mediated by the atypical PH domain of Elmo2 and the Glu-Pro-rich domain of ClipR-59 and regulated by Rho-GTPase. We have examined the impact of ClipR-59 on Elmo2 downstream signaling and found that interaction of ClipR-59 with Elmo2 enhanced Rac1 activation. Collectively, our studies demonstrate that formation of an Elmo2·ClipR-59 complex plays an important role in myoblast fusion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/citologia , Animais , Diferenciação Celular , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Mioblastos/metabolismo , Neuropeptídeos/metabolismo , Estrutura Terciária de Proteína/genética , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Mol Endocrinol ; 27(11): 1969-79, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24030252

RESUMO

GH is a potent anabolic and metabolic factor that binds its cell surface receptor (GHR), activating the GHR-associated tyrosine kinase, Janus kinase 2, which phosphorylates and activates the latent transcription factor, signal transducer and activator of transcription 5 (STAT5). Some GH actions are mediated by the elaboration of IGF-1, which exerts effects by binding and activating the heterotetrameric tyrosine kinase growth factor receptor, IGF-1R. In addition to this GH-GHR-IGF-1-IGF-1R scheme, we have demonstrated in primary osteoblasts and in islet ß-cells that then deletion or silencing of IGF-1R results in diminished GH-induced STAT5 phosphorylation, suggesting that the presence of IGF-1R may facilitate GH signaling. In this study, we explore potential roles for protein tyrosine phosphatase activity in modulating GH-induced signaling, comparing conditions in which IGF-1R is present or diminished. We confirm that in mouse primary osteoblasts harboring loxP sites flanking the IGF-1R gene, infection with an adenovirus that expresses the Cre recombinase results in IGF-1R deletion and diminished acute GH-induced STAT5 phosphorylation. Furthermore, we present a new model of IGF-1R silencing, in which expression of short hairpin RNA directed at IGF-1R greatly reduces IGF-1R abundance in LNCaP human prostate cancer cells. In both models, treatment with a chemical inhibitor of protein tyrosine phosphatase-1B (PTP-1B), but not one of src homology region 2 domain-containing phosphotase-1 (SHP-1) and SHP-2, reverses the loss of GH-induced STAT5 phosphorylation in cells lacking IGF-1R but has no effect in cells with intact IGF-1R. Furthermore, expression of either a dominant-negative PTP-1B or the PTP-1B-interacting inhibitory protein, constitutive photomorphogenesis 1, also rescues acute GH-induced STAT5 signaling in IGF-1R-deficient cells but has no effect in IGF-1R replete cells. By expressing a substrate-trapping mutant PTP-1B, we demonstrate that tyrosine phosphorylated Janus kinase-2 is a PTP-1B substrate only in cells lacking IGF-1R. Collectively, our data suggest that IGF-1R positively regulates acute GH signaling by preventing access of PTP-1B activity to Janus kinase 2 and thereby preventing PTP-1B-mediated suppression of GH-induced STAT5 activation.


Assuntos
Hormônio do Crescimento/fisiologia , Processamento de Proteína Pós-Traducional , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptor IGF Tipo 1/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Benzofuranos/farmacologia , Células Cultivadas , Humanos , Janus Quinase 2/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Quinolinas/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Mol Cell Biol ; 33(21): 4255-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24001771

RESUMO

ClipR-59 interacts with Akt and regulates Akt compartmentalization and Glut4 membrane trafficking in a plasma membrane association-dependent manner. The association of ClipR-59 with plasma membrane is mediated by ClipR-59 palmitoylation at Cys534 and Cys535. To understand the regulation of ClipR-59 palmitoylation, we have examined all known mammalian DHHC palmitoyltransferases with respect to their ability to promote ClipR-59 palmitoylation. We found that, among 23 mammalian DHHC palmitoyltransferases, DHHC17 is the major ClipR-59 palmitoyltransferase, as evidenced by the fact that DHHC17 interacted with ClipR-59 and palmitoylated ClipR-59 at Cys534 and Cys535. By palmitoylating ClipR-59, DHHC17 directly regulates ClipR-59 plasma membrane association, as ectopic expression of DHHC17 increased whereas silencing of DHHC17 reduced the levels of ClipR-59 associated with plasma membrane. We have also examined the role of DHHC17 in Akt signaling and found that silencing of DHHC17 in 3T3-L1 adipocytes decreased the levels of Akt as well as ClipR-59 on the plasma membrane and impaired insulin-dependent Glut4 membrane translocation. We suggest that DHHC17 is a ClipR-59 palmitoyltransferase that modulates ClipR-59 plasma membrane binding, thereby regulating Akt signaling and Glut4 membrane translocation in adipocytes.


Assuntos
Aciltransferases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Células COS , Chlorocebus aethiops , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Humanos , Insulina/fisiologia , Lipoilação , Proteínas Associadas aos Microtúbulos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
11.
Adipocyte ; 2(1): 17-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23599907

RESUMO

Protein palmitoylation, by modulating the dynamic interaction between protein and cellular membrane, is involved in a wide range of biological processes, including protein trafficking, sorting, sub-membrane partitioning, protein-protein interaction and cell signaling. To explore the role of protein palmitoylation in adipocytes, we have performed proteomic analysis of palmitoylated proteins in adipose tissue and 3T3-L1 adipocytes and identified more than 800 putative palmitoylated proteins. These include various transporters, enzymes required for lipid and glucose metabolism, regulators of protein trafficking and signaling molecules. Of note, key proteins involved in membrane translocation of the glucose-transporter Glut4 including IRAP, Munc18c, AS160 and Glut4, and signaling proteins in the JAK-STAT pathway including JAK1 and 2, STAT1, 3 and 5A and SHP2 in JAK-STAT, were palmitoylated in cultured adipocytes and primary adipose tissue. Further characterization showed that palmitoylation of Glut4 and IRAP was altered in obesity, and palmitoylation of JAK1 played a regulatory role in JAK1 intracellular localization. Overall, our studies provide evidence to suggest a novel and potentially regulatory role for protein palmitoylation in adipocyte function.

12.
J Biol Chem ; 288(15): 10902-13, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23439647

RESUMO

Recent studies reveal that COP1 suppresses the expression of gluconeogenetic genes and prohibits hepatic glucose production. To get more insight into COP1 in hepatic cells, we examined the impact of COP1 on insulin-responsive genes and insulin signaling. We found that COP1 increased the responsiveness of insulin-modulated genes to insulin in that it promoted the expression of insulin-induced genes and inhibited that of insulin-suppressed genes and that COP1 enhanced insulin signaling as it promoted phosphorylation of Akt and ERK as well as tyrosine phosphorylation of IRß induced by insulin. To delineate the mechanism under which COP1 modulates insulin signaling, we examined the possibility that COP1 modulates the activity of PTP1B, the major insulin receptor tyrosine phosphatase. The results indicated that COP1 physically interacted with PTP1B and suppressed PTP1B phosphatase activity as well as the association of PTP1B with IRß. We suggest that COP1 is a positive regulator of hepatic insulin signaling.


Assuntos
Insulina/metabolismo , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Nucleares/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Ativação Enzimática/fisiologia , Células Hep G2 , Humanos , Insulina/genética , Camundongos , Proteínas Nucleares/genética , Fosforilação/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Ubiquitina-Proteína Ligases/genética
13.
J Biol Chem ; 287(32): 26890-900, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22689584

RESUMO

ClipR-59 is a membrane-associated protein and has been implicated in membrane signaling and vesicle trafficking. Recently, we have identified ClipR-59 as an Akt-interacting protein, and we have found that, by interacting with Akt, ClipR-59 modulates Akt subcellular compartmentalization and Akt substrate AS160 phosphorylation, thereby promoting Glut4 membrane translocation. Here, we have further investigated the regulatory effects of ClipR-59 on AS160 phosphorylation and subsequent adipocyte glucose transport. Our data showed that ClipR-59 interacted with AS160, which was mediated by the ankyrin repeats of ClipR-59 and regulated by insulin signaling. Moreover, the data also demonstrated that the interaction of ClipR-59 with AS160 was required for ClipR-59 to modulate Glut4 membrane translocation as ΔANK-ClipR-59, an AS160 interaction-defective mutant, failed to promote AS160 phosphorylation, Glut4 membrane translocation, and glucose transport induced by insulin in 3T3-L1 adipocytes. Because ClipR-59 also interacts with Akt and enhances the interaction between Akt and AS160, we suggest that ClipR-59 functions as a scaffold protein to facilitate Akt-mediated AS160 phosphorylation, thereby regulating glucose transport.


Assuntos
Adipócitos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células 3T3 , Animais , Membrana Celular/metabolismo , Humanos , Camundongos , Fosforilação , Transporte Proteico , Transdução de Sinais , Regulação para Cima
14.
J Biol Chem ; 285(29): 22426-36, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20421299

RESUMO

Mixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture, we show that MLK3 mediates its effects via the pseudokinase TRB3, a mammalian homolog of Drosophila Tribbles. TRB3 expression strongly coincided with conformational change and mitochondrial translocation of BAX. Mechanistically, MLK3 directly interacted with and stabilized TRB3, resulting in inhibition of Akt, a strong suppressor of BAX translocation and mitochondrial membrane permeabilization. Accordingly, attenuation of MLK3 or TRB3 expression each prevented cytokine-induced BAX conformational change and attenuated the progression to apoptosis. We conclude that MLKs compromise mitochondrial integrity and suppress cellular survival mechanisms via TRB3-dependent inhibition of Akt.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinas/farmacologia , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , MAP Quinase Quinase Quinases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Adulto , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
15.
Mol Endocrinol ; 23(4): 475-85, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19164449

RESUMO

Pseudokinase TRB3 is an inducible gene whose expression is regulated by stress response and insulin and associated with insulin resistance and metabolic syndrome. In this report, we have investigated the mechanism under which insulin regulates TRB3 gene expression and demonstrated that insulin induces TRB3 expression via C/EBPbeta. We found that in Fao hepatoma and 3T3-L1 adipocytes, C/EBPbeta expression induced by insulin preceded that of TRB3 and that mutation of the C/EBPbeta binding site in TRB3 promoter abolished the responsiveness of the TRB3 gene to insulin. We further showed that ectopic expression of C/EBPbeta augmented, whereas knockdown of C/EBPbeta reduced, TRB3 expression induced by insulin. In addition, we presented data to show that insulin, through a similar mechanism under which insulin induces TRB3 expression, promotes the expression of genes such as ANAS, ATF3, BIP, and CHOP, which are typical stress-responsive genes. We also examined the impact of C/EBPbeta expression on Akt activation and found that inaction of C/EBPbeta not only augmented Akt activation but also obliterated the suppression of Akt activation due to prolonged insulin stimulation. We suggest, through induction of C/EBPbeta in hepatic cells and adipocytes, that insulin induces the expression of stress-responsive genes, which may represent a novel insulin action.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Insulina/metabolismo , Células 3T3-L1 , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas de Ciclo Celular/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Fisiológico
16.
Mol Cell Biol ; 29(6): 1459-71, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19139280

RESUMO

Akt is activated on the plasma membrane and its substrates are distributed throughout various cellular compartments. To phosphorylate its substrates, Akt needs to be recruited to specific intracellular compartments. Thus, regulation of Akt cellular compartmentalization constitutes an important mechanism to specify Akt signaling. Here, we report the identification of ClipR-59 as an Akt interaction protein. We show that the interaction of ClipR-59 with Akt is mediated by the CAP-Gly domain of ClipR-59 and kinase domain of Akt and is regulated by Akt phosphorylation. We demonstrate that ClipR-59 regulates the Akt membrane association through its interaction with Akt and membrane localization and, by modulating Akt cellular compartmentalization, differentially modulates phosphorylation of Akt substrates in adipocytes. Finally, we provide evidence that one of the Akt substrates whose phosphorylation is upregulated by ClipR-59 is AS160, a negative regulator of adipocyte glucose transport. Accordingly, ectopic expression of ClipR-59 enhances, whereas knockdown of ClipR-59 suppresses, adipocyte glucose transport. We suggest that ClipR-59 functions as a scaffold protein that interacts with phospho-Akt and recruits active Akt on the membrane and may play an important role in adipocyte glucose transport.


Assuntos
Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adipócitos/fisiologia , Animais , Transporte Biológico , Linhagem Celular , Proteínas Ativadoras de GTPase/metabolismo , Glucose/metabolismo , Humanos , Camundongos , Fosforilação , Ligação Proteica , Regulação para Cima/fisiologia
17.
J Biol Chem ; 283(51): 35464-73, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18815134

RESUMO

COP1 is a Ring-Finger E3 ubiquitin ligase that is involved in plant development, mammalian cell survival, growth, and metabolism. Here we report that COP1, whose expression is enhanced by insulin, regulates FoxO1 protein stability. We found that in Fao hepatoma cells, ectopic expression of COP1 decreased, whereas knockdown of COP1 expression increased the level of endogenous FoxO1 protein without impacting other factors such as C/EBPalpha and CREB (cAMP-response element-binding protein). We further showed that COP1 binds FoxO1, enhances its ubiquitination, and promotes its degradation via the ubiquitin-proteasome pathway. To determine the biological significance of COP1-mediated FoxO1 protein degradation, we have examined the impact of COP1 on FoxO1-mediated gene expression and found that COP1 suppressed FoxO1 reporter gene as well as FoxO1 target genes such as glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two key targets for FoxO1 in the regulation of gluconeogenesis, with corresponding changes of hepatic glucose production in Fao cells. We suggest that by functioning as a FoxO1 E3 ligase, COP1 may play a role in the regulation of hepatic glucose metabolism.


Assuntos
Carboxiliases/biossíntese , Fatores de Transcrição Forkhead/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Gluconeogênese/fisiologia , Glucose-6-Fosfatase/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carboxiliases/genética , Linhagem Celular Tumoral , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Glucose-6-Fosfatase/genética , Humanos , Fígado , Proteínas do Tecido Nervoso/genética , Ligação Proteica/fisiologia , Ratos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
18.
Exp Cell Res ; 314(7): 1566-74, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18316073

RESUMO

TRB3 is a pseudokinase whose expression is regulated during stress response and changing of nutrient status. TRB3 negatively regulates Akt activation and noticeably, TRB3 expression is induced by insulin. Here, we sought to determine the dynamic relationship between TRB3 expression and Akt activation. We find that insulin induces TRB3 expression in cell type dependent manner such that in hepatic cells and adipocytes but not Beta cells and muscle cells. In Fao hepatoma cells, induction of TRB3 expression by insulin restrains Akt activation and renders Akt refractory to further activation. In addition, we have also analyzed the roles of PI3K and its downstream kinases Akt and atypical PKC in TRB3 expression. Induction of TRB3 expression by insulin requires PI3K. However, inactivation of Akt enhances TRB3 expression whereas inhibition of PKCzeta expression impairs TRB3 expression induced by insulin. Our data demonstrated that PI3K conveys both negative and positive signals to TRB3 expression. We suggest that insulin-induced TRB3 expression functions as an indicator how multiple insulin-induced signal transduction pathways are balanced.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hepatócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Células 3T3-L1 , Animais , Proteínas de Ciclo Celular/genética , Ativação Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Insulina/farmacologia , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Mol Cell ; 28(2): 200-13, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17964260

RESUMO

During muscle regeneration, the mechanism integrating environmental cues at the chromatin of muscle progenitors is unknown. We show that inflammation-activated MKK6-p38 and insulin growth factor 1 (IGF1)-induced PI3K/AKT pathways converge on the chromatin of muscle genes to target distinct components of the muscle transcriptosome. p38 alpha/beta kinases recruit the SWI/SNF chromatin-remodeling complex; AKT1 and 2 promote the association of MyoD with p300 and PCAF acetyltransferases, via direct phosphorylation of p300. Pharmacological or genetic interference with either pathway led to partial assembly of discrete chromatin-bound complexes, which reflected two reversible and distinct cellular phenotypes. Remarkably, PI3K/AKT blockade was permissive for chromatin recruitment of MEF2-SWI/SNF complex, whose remodeling activity was compromised in the absence of MyoD and acetyltransferases. The functional interdependence between p38 and IGF1/PI3K/AKT pathways was further established by the evidence that blockade of AKT chromatin targets was sufficient to prevent the activation of the myogenic program triggered by deliberate activation of p38 signaling.


Assuntos
Cromatina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , MAP Quinase Quinase 6/metabolismo , Desenvolvimento Muscular , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Acetilação , Animais , Linhagem Celular , Forma Celular , Cromonas/farmacologia , Proteína p300 Associada a E1A/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imidazóis/farmacologia , Fator de Crescimento Insulin-Like I/genética , MAP Quinase Quinase 6/genética , Camundongos , Morfolinas/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Fatores de Regulação Miogênica/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica , Transfecção , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
20.
Mol Cell Biol ; 27(16): 5776-89, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17576816

RESUMO

Bone morphogenetic protein (BMP) signaling regulates many different biological processes, including cell growth, differentiation, and embryogenesis. BMPs bind to heterogeneous complexes of transmembrane serine/threonine (Ser/Thr) kinase receptors known as the BMP type I and II receptors (BMPRI and BMPRII). BMPRII phosphorylates and activates the BMPRI kinase, which in turn activates the Smad proteins. The cytoplasmic region of BMPRII contains a "tail" domain (BMPRII-TD) with no enzymatic activity or known regulatory function. The discovery of mutations associated with idiopathic pulmonary artery hypertension mapping to BMPRII-TD underscores its importance. Here, we report that Tribbles-like protein 3 (Trb3) is a novel BMPRII-TD-interacting protein. Upon BMP stimulation, Trb3 dissociates from BMPRII-TD and triggers degradation of Smad ubiquitin regulatory factor 1 (Smurf1), which results in the stabilization of BMP receptor-regulated Smads and potentiation of the Smad pathway. Downregulation of Trb3 inhibits BMP-mediated cellular responses, including osteoblast differentiation of C2C12 cells and maintenance of the smooth muscle phenotype of pulmonary artery smooth muscle cells. Thus, Trb3 is a critical component of a novel mechanism for regulation of the BMP pathway by BMPRII.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/farmacologia , Células COS , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Regulação para Baixo/efeitos dos fármacos , Humanos , Camundongos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Células NIH 3T3 , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...